matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenPartielle Differenzierbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Differenzierbar
Partielle Differenzierbar < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Mi 23.07.2014
Autor: Trikolon

Aufgabe
Gegeben ist die Funktion f: [mm] IR^2 [/mm] --> IR durch
f(x,y)= [mm] \bruch{x^2}{x^2+y^2}. [/mm] wenn (x,y) ungleich (0,0) und 0, falls (x,y)=(0,0). Ist f im Nullpunkt partiell bzw total diffbar?

Hallo,
  
also f ist im Nullpunkt nicht partielle diffbar und damit auch nicht total diffbar, weil [mm] \limes_{h\rightarrow\0} \bruch{f(h,0)}{h} [/mm] = 1/h --> [mm] \infty. [/mm]

Stimmt das so?

        
Bezug
Partielle Differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Mi 23.07.2014
Autor: hippias


> Gegeben ist die Funktion f: [mm]IR^2[/mm] --> IR durch
>  f(x,y)= [mm]\bruch{x^2}{x^2+y^2}.[/mm] wenn (x,y) ungleich (0,0)
> und 0, falls (x,y)=(0,0). Ist f im Nullpunkt partiell bzw
> total diffbar?
>  Hallo,
>    
> also f ist im Nullpunkt nicht partielle diffbar und damit
> auch nicht total diffbar, weil [mm]\limes_{h\rightarrow\0} \bruch{f(h,0)}{h}[/mm]
> = 1/h --> [mm]\infty.[/mm]
>  
> Stimmt das so?

Ja, wenn die Funktion wirklich so definiert ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]