Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft
Für
Schüler
,
Studenten
, Lehrer, Mathematik-Interessierte.
Hallo Gast!
[
einloggen
|
registrieren
]
Startseite
·
Forum
·
Wissen
·
Kurse
·
Mitglieder
·
Team
·
Impressum
Forenbaum
Forenbaum
Schulmathe
Primarstufe
Mathe Klassen 5-7
Mathe Klassen 8-10
Oberstufenmathe
Schul-Analysis
Lin. Algebra/Vektor
Stochastik
Abivorbereitung
Mathe-Wettbewerbe
Bundeswettb. Mathe
Deutsche MO
Internationale MO
MO andere Länder
Känguru
Sonstiges
Gezeigt werden alle Foren bis zur Tiefe
2
Navigation
Startseite
...
Neuerdings
beta
neu
Forum
...
vor
wissen
...
vor
kurse
...
Werkzeuge
...
Nachhilfevermittlung
beta
...
Online-Spiele
beta
Suchen
Verein
...
Impressum
Das Projekt
Server
und Internetanbindung werden durch
Spenden
finanziert.
Organisiert wird das Projekt von unserem
Koordinatorenteam
.
Hunderte Mitglieder
helfen ehrenamtlich in unseren
moderierten
Foren
.
Anbieter der Seite ist der gemeinnützige Verein "
Vorhilfe.de e.V.
".
Partnerseiten
Weitere Fächer:
Vorhilfe.de
FunkyPlot
: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Startseite
>
MatheForen
>
Partielle Differentialgleichungen
>
Partielle Differential gleichu
Foren für weitere Schulfächer findest Du auf
www.vorhilfe.de
z.B.
Philosophie
•
Religion
•
Kunst
•
Musik
•
Sport
•
Pädagogik
Forum "Partielle Differentialgleichungen" - Partielle Differential gleichu
Partielle Differential gleichu
<
partielle
<
Differentialgl.
<
Analysis
<
Hochschule
<
Mathe
<
Vorhilfe
Ansicht:
[ geschachtelt ]
|
Forum "Partielle Differentialgleichungen"
|
Alle Foren
|
Forenbaum
|
Materialien
Partielle Differential gleichu: Charachtaristiken methode
Status
:
(Frage) überfällig
Datum
:
20:05
Di
10.10.2006
Autor
:
Timo-Beil
beim lösen der PDGL :
x*Ux + (x+y)*Uy = 0
mit den phasen differentialgleichungen muß die gleichung umgeschrieben werden :
Ux + ((x+y)/x )* Uy = 0
nun x' =1 und integration führt dann nachher wenn man das gleiche für y' tut
auf den folgenden Gewöhnlichen DGL :
(y'-1)/y = 1/x
und hier liegt mein problem ich kann diese gleichung mit den separierten variabeln nicht lösen.
hat jemand eine idee?
Bezug
Partielle Differential gleichu: Fälligkeit abgelaufen
Status
:
(Mitteilung) Reaktion unnötig
Datum
:
20:20
Fr
13.10.2006
Autor
:
matux
$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht:
[ geschachtelt ]
|
Forum "Partielle Differentialgleichungen"
|
Alle Foren
|
Forenbaum
|
Materialien
www.schulmatheforum.de
[
Startseite
|
Forum
|
Wissen
|
Kurse
|
Mitglieder
|
Team
|
Impressum
]