matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Partialbruchzerlegung
Partialbruchzerlegung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Nenner Frage
Status: (Frage) beantwortet Status 
Datum: 08:52 Mo 16.09.2013
Autor: Igor_Igorson

Aufgabe
[mm] f(x)=\bruch{*****}{x^4+2x^2+3} [/mm]

frage zum Nenner...
wie genau zerleg ich den? meine Idee war folgendes anhand der Nullstellen... aber ich bin mir nicht sicher ob ich das wegen der drei am ende so machen darf

(x-3/2)(x+5/2)

Mfg Christoph

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Mo 16.09.2013
Autor: Diophant

Hallo,

> [mm]f(x)=\bruch{*****}{x^4+2x^2+3}[/mm]
> frage zum Nenner...
> wie genau zerleg ich den? meine Idee war folgendes anhand
> der Nullstellen... aber ich bin mir nicht sicher ob ich das
> wegen der drei am ende so machen darf

>

> (x-3/2)(x+5/2)

>

Da must du a) nochmal nachrechen und b) deinen Ansatz nochmals überdenken. Der obige Nennerterm besitzt keine reellen Nullstellen.

Wenn das ganze für ein Integral gut sein soll, dann muss man irgendwie geshickt substituieren, um dann irgendwas mit dem Arkustangens zu machen. Aber um da zielführende Hilfe zu bekommen, solltest du schon die komplette Aufgabe angeben.

Also kurz zusammengefasst: Prarialbruchzerlegung funktioniert hier nicht.


Gruß, Diophant

Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:09 Mo 16.09.2013
Autor: Igor_Igorson

ich muss mich entschuldigen ... falsch abgeschrieben
es heißt -3 am ende... somit sollte die aufgabe dann zwei doppelte nullstellen haben

und die Aufgabenstellung da zu ist relativ klein drum hab ich sie weggelassen.

"Bestimmen Sie mittels Partialbruchzerlegung eine Stammfunktion von f(x)... "

Bezug
                        
Bezug
Partialbruchzerlegung: Zähler der Funktion?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:45 Mo 16.09.2013
Autor: Roadrunner

Hallo Igor!


Dennoch wäre es sehr interessant zu wissen, wie der Zähler des  Bruches aussieht, da dies einen enormen Einfluss auf die Integrationsmethode hat.
Und das war auch auch Zweck und Ziel der Frage nach der kompletten Aufgabenstellung.


Gruß vom
Roadrunner

Bezug
                                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:48 Mo 16.09.2013
Autor: Igor_Igorson

[mm] \bruch{4*(x^3+1)}{x^4+2*x^2-3} [/mm]

Bezug
                                        
Bezug
Partialbruchzerlegung: Bingo!
Status: (Antwort) fertig Status 
Datum: 09:51 Mo 16.09.2013
Autor: Roadrunner

Hallo Christoph!


Und damit ist genau das eingetreten, was ich fast vermutet hatte.
Dieses Integral löst man gänzlich ohne Partialbruchzerlegung, da der Zähler exakt der Ableitung des Nenners entspricht.

Hier geht es mit der Substitution des ganzen Nenners: $u \ := \ [mm] x^4+2x^2-3$ [/mm] .


Gruß vom
Roadrunner

Bezug
                                                
Bezug
Partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:49 Di 17.09.2013
Autor: Igor_Igorson

das es sinnvoll ist andere Methoden zu nutzen sehe ich natürlich ein, die Aufgabe lautete aber das ganze mit Partialbruchzerlegung durchzuführen!
daher komme ich da nicht drumherum..

allerdings hat sich das ganze schon erledigt.
ich bedanke mich für die Hilfe

Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Mo 16.09.2013
Autor: Diophant

Hallo,

> ich muss mich entschuldigen ... falsch abgeschrieben
> es heißt -3 am ende...

Also ist

[mm] x^4+2x^2-3 [/mm]

der fragliche Nenner? Dann ist das hier:

> somit sollte die aufgabe dann zwei

> doppelte nullstellen haben

falsch (ich verstehe auch deine Argumentation nicht, weshalb sollte sie das?). Rechne nochmal nach. Dieser Term besitzt zwei reelle sowie zwei konjugiert komplexe Lösungen.

>

> und die Aufgabenstellung da zu ist relativ klein drum hab
> ich sie weggelassen.

Das ist nicht sonderlich sinnvoll, wenn man zielführende Hilfe einholen möchte.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]