matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationPart.Abl. von f(r)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Part.Abl. von f(r)
Part.Abl. von f(r) < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Part.Abl. von f(r): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Mi 01.12.2010
Autor: lauralikesmath

Aufgabe
Das Beispiel ist eigentlich aus der Physik, aber die Frage dazu ist mathematisch.
geg. [mm] U:\IR^{3}->\IR [/mm] mit [mm] U(\vec{r})=f(r) [/mm]
wobei f(r) eine Funktion des Abstand ist, d.h. [mm] r=||\vec{r}||=\wurzel{x^2+y^2+z^2}. [/mm]

Berechnen sie den Gradienten von U und stellen Sie ihn nur mit [mm] \vec{r} [/mm] und f(r) (bzw f'(r) und f''(r) da.


Hallo!


Ich habe mir also gedacht dass
U=f [mm] \circ [/mm] D
mit [mm] f:\IR->\IR [/mm] wie oben und [mm] D:\IR^{3}->\IR, [/mm] D=||.||, die Abstandsfunktion. Also [mm] U(\vec{r})=f(D(\vec{r}))=f(||\vec{r}||) [/mm]


So, jetzt muss also der Gradient berechnet werden, dazu müssen die partiellen Ableitungen her:
Das wäre doch dann nach der Regel:
[mm] \bruch{\delta U}{\delta x} [/mm] = [mm] \bruch{\delta f}{\delta D(x)} [/mm] * [mm] \bruch{\delta D}{\delta x} [/mm]

Aber was soll denn dann [mm] \bruch{\delta f}{\delta D(x)} [/mm] sein? Ich weiß dann nicht was D(x) ist und erst recht kann ich keine partielle Ableitung von f (als Fkt in einer Variablen) nach x bilden :(

Kann mir jemand aushelfen? :-)

Liebe Grüße,
Laura

        
Bezug
Part.Abl. von f(r): Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Mi 01.12.2010
Autor: MathePower

Hallo lauralikesmath,

> Das Beispiel ist eigentlich aus der Physik, aber die Frage
> dazu ist mathematisch.
>  geg. [mm]U:\IR^{3}->\IR[/mm] mit [mm]U(\vec{r})=f(r)[/mm]
>  wobei f(r) eine Funktion des Abstand ist, d.h.
> [mm]r=||\vec{r}||=\wurzel{x^2+y^2+z^2}.[/mm]
>  
> Berechnen sie den Gradienten von U und stellen Sie ihn nur
> mit [mm]\vec{r}[/mm] und f(r) (bzw f'(r) und f''(r) da.
>  
> Hallo!
>  
>
> Ich habe mir also gedacht dass
>  U=f [mm]\circ[/mm] D
>  mit [mm]f:\IR->\IR[/mm] wie oben und [mm]D:\IR^{3}->\IR,[/mm] D=||.||, die
> Abstandsfunktion. Also
> [mm]U(\vec{r})=f(D(\vec{r}))=f(||\vec{r}||)[/mm]
>  
>
> So, jetzt muss also der Gradient berechnet werden, dazu
> müssen die partiellen Ableitungen her:
>  Das wäre doch dann nach der Regel:
>  [mm]\bruch{\delta U}{\delta x}[/mm] = [mm]\bruch{\delta f}{\delta D(x)}[/mm]
> * [mm]\bruch{\delta D}{\delta x}[/mm]
>  
> Aber was soll denn dann [mm]\bruch{\delta f}{\delta D(x)}[/mm] sein?
> Ich weiß dann nicht was D(x) ist und erst recht kann ich
> keine partielle Ableitung von f (als Fkt in einer
> Variablen) nach x bilden :(


Die Bedeutung von D steht doch in der Aufgabe:

[mm]U(\vec{r})=f(D(\vec{r}))=f(||\vec{r}||)=f\left(r\right)[/mm]

[mm]\bruch{\delta f}{\delta D(x)}[/mm]  ist dann nichts anderes als [mm]\bruch{\delta f}{\delta r}[/mm] mit [mm]r=r\left(x,y,z\right)=\wurzel{x^{2}+y^{2}+z^{2}}[/mm]


>  
> Kann mir jemand aushelfen? :-)
>  
> Liebe Grüße,
>  Laura


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]