matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Pareto-Verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Statistik (Anwendungen)" - Pareto-Verteilung
Pareto-Verteilung < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pareto-Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Mi 02.09.2009
Autor: mathe-un-pro

Hallo, hier eine UAfgabe bei der ich nicht auf das Ergebnis komme...

Die zur Reparatur eine Maschine benötigte Menge Schweröl werde durch eine Pareto-verteilte Zufallsvariable mit den Parametern [mm]x_0[/mm]=1 Liter und [mm] \varepsilon [/mm] =4 beschrieben. Ein Unternehmen erhält den Auftrag, 60 gleichartige Maschinen zu raparieren. Wie groß ist (näherungsweise) die Wahrscheinlichkeit dafür, dass der zur Verfügung stehende Vorrat von 81 Litern Schweröl für alle Maschinen ausreicht.

das Ergebnis soll 0,61 sein!

Ich habe bereits Var(X) und E(X) berechnet, bin mir aber absolut nicht klar darüber, wie ich die 60 Maschinen und 81L Schweröl ind die Verteilungsfunktion F(X)= 1-([mm]\bruch{x_o}{x}[/mm][mm] )^\varepsilon [/mm] einbauen kann.

Danke im Voraus für eure Hilfe


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Pareto-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Mi 02.09.2009
Autor: Al-Chwarizmi


> Hallo, hier eine Aufgabe bei der ich nicht auf das Ergebnis
> komme...
>  
> Die zur Reparatur einer Maschine benötigte Menge Schweröl
> werde durch eine Pareto-verteilte Zufallsvariable mit den
> Parametern [mm]x_0[/mm]=1 Liter und [mm]\varepsilon[/mm] =4 beschrieben. Ein
> Unternehmen erhält den Auftrag, 60 gleichartige Maschinen
> zu reparieren. Wie groß ist (näherungsweise) die
> Wahrscheinlichkeit dafür, dass der zur Verfügung stehende
> Vorrat von 81 Litern Schweröl für alle Maschinen
> ausreicht.
>  
> das Ergebnis soll 0,61 sein!
>  
> Ich habe bereits Var(X) und E(X) berechnet, bin mir aber
> absolut nicht klar darüber, wie ich die 60 Maschinen und
> 81L Schweröl ind die Verteilungsfunktion F(X)=
> 1-([mm]\bruch{x_o}{x}[/mm][mm] )^\varepsilon[/mm] einbauen kann.



Hallo,

Die [mm] E(X)=E_1(X) [/mm] und [mm] Var(X)=Var_1(X), [/mm] die du schon
berechnet hast, beziehen sich wohl auf die Pareto-
Verteilung für eine einzige Maschine.  Zahlenwerte ?

Als Summe von 60 identischen Verteilungen ist
der Ölverbrauch für alle Maschinen zusammen
annähernd normalverteilt. Bestimme also aus den
vorliegenden Werten [mm] E_1(X) [/mm] und [mm] Var_1(X) [/mm] die entspre-
chenden Werte [mm] E_{60}(X) [/mm] und [mm] Var_{60}(X) [/mm] , das ist ganz leicht.
Anschliessend dann die Rechnung mit der Normal-
verteilung, deren Prinzip dir wohl bekannt ist.

LG    Al-Chw.

Bezug
                
Bezug
Pareto-Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 Mi 02.09.2009
Autor: mathe-un-pro

Für [mm]E_1(X)[/mm] habe ich [mm] \bruch{4}{3} [/mm] errechnet, für [mm]Var_1(x)[/mm] [mm] \bruch{4}{18}. [/mm] Demnach müsste [mm]E_6_0(X)[/mm] = 80 und [mm]Var_6_0(X)[/mm] = [mm] \bruch{40}{3} [/mm] sein. Diese Werte sollen in die Verteilungsfunktion der Normalverteilung eingesetzt werden? Was passiert dabei mit den 81l und welchen Wert nimmt X in dem Falle an?

Bezug
                        
Bezug
Pareto-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Mi 02.09.2009
Autor: Al-Chwarizmi


> Für [mm]E_1(X)[/mm] habe ich [mm]\bruch{4}{3}[/mm] errechnet,    [ok]
> für [mm]Var_1(x)[/mm] [mm]\bruch{4}{18}.[/mm]    [ok]

(könnte man kürzen ...)

> Demnach müsste [mm]E_{60}(X)[/mm] = 80 und [mm]Var_{60}(X) =\bruch{40}{3}[/mm] sein.
> Diese Werte sollen in die
> Verteilungsfunktion der Normalverteilung eingesetzt werden?
> Was passiert dabei mit den 81 l und welchen Wert nimmt X in
> dem Falle an?

Der gesamte Oelverbrauch für die 60 Maschinen
ist also (fast exakt) normalverteilt mit [mm] $\mu\ [/mm] =\ 80$ und
[mm] $\sigma\ [/mm] =\ [mm] \sqrt{\bruch{40}{3}}\approx3.651$ [/mm] .
Nun rechnet man durch die Substitution $\ z\ =\ [mm] \frac{x-\mu}{\sigma}$ [/mm]
auf die Standardnormalverteilung um. Also ist

     $\ [mm] P(x\le [/mm] 81)\ =\ [mm] P\left(z\le \frac{81-80}{3.651}\right)\ [/mm] =\ [mm] P(z\le [/mm] 0.2739)$

Das Ergebnis erhält man dann durch Nachschlagen
und Interpolieren in einer Tabelle der Standardnormal-
verteilung, zum Beispiel da: []Tabelle

LG    Al-Chw.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]