matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeParameterform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - Parameterform
Parameterform < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterform: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:03 Di 13.11.2012
Autor: prinzessin258

Aufgabe
Stellen Sie dieses Gleichungssystem als Parameterform dar?
x1+x2+x3+x4+x5=3
x1+2x2+x3+2x4+2x5 = 4
x1+2x2+x3+2x4+3x5=5

Ich habe leider keine Ahnung was genau damit gemeint ist.
Weiters habe ich noch nicht verstanden wie ich ein Gleichungssystem löse, dass mehr Unbekannte als Gleichungen hat. Ich habe dazu zwar schon Beschreibungen gefunden:
http://de.wikibooks.org/wiki/MathGymOS/_LGS/_Mehr_Unbekannte_als_Gleichungen

Leider habe ich es dadurch nicht verstanden. Vielleicht kennt jmd eine Seite wo das ganze leichter erklärt wird oder es findet sich jmd der so nett wäre mir das zu erklären. Ich muss das für die Prüfung unbedingt verstanden haben.

Danke im Voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Parameterform: Antwort
Status: (Antwort) fertig Status 
Datum: 11:18 Di 13.11.2012
Autor: Diophant

Hallo und

[willkommenvh]

Der Trick dabei ist folgender: man betrachtet so viele Unbekannte, wie man Gleichungen zu wenig hat, als bekannt. Dies drückt man am besten damit aus, indem man diese Unbekannten umbenennt:

[mm] x_4=r [/mm]
[mm] x_5=s [/mm]

Jetzt könntest du einfach sagen, r und s sind bekannte Zahlen. Dann hast du ein 3x3-LGS, dessen Lösungsmenge von den zwei Parametern r und s abhängt. Diese Lösungsmenge ist im Prinzip die gesuchte Lösung, der Titel legt jedoch nahe, dass du sie noch in vektorieller Form aufschreiben sollst, aber das wirst du aus deinen Unterlagen wissen.

Man kann natürlich alles im Netz finden, auch Anleitungen zu dieser Art Aufgabe. Aber ich würde mal sagen: das bekommst du so hin. Probier es mal und stelle deine Rechnung samt Ergebnissen hier vor, dann sagen wir dir, ob alles richtig ist oder wo noch Fehler sind.

Du hast ja in deinem Profil bisher keine Info drinnen, was genau du für eine Prüfung anstrebst. Wenn du das noch eintragen würdest, könnte man die Hilfestellung noch 'optimieren', indem man nicht zu viel und nicht zu wenig voraussetzt. :-)


Gruß, Diophant

Bezug
                
Bezug
Parameterform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Di 13.11.2012
Autor: prinzessin258

Hallo und danke für die rasche Antwort,

bei mir darf man leider gar nichts annehmen :( Mein Schulmathe ist leider doch schon einige Jahre her und davor habe ich eine Handelsakademie besucht. Ich wusste bis dahin nicht einmal was eine Matrix ist und Gleichungssysteme in dieser Form hatte ich nie. (ich werde das noch im Profil ergänzen)

Bedeutet die Darstellung in Parameterform einfach nur in vektorieller Form? Das ist dann leicht :).

Ich habe jetzt mal versucht das Gleichungssystem in folgende Form zu bringen: (sorry für die Darstellung, ich werde mir noch ansehen, wie ich das schön formatieren kann)


1 1 1 1 1   3
1 2 1 2 2   4
1 2 1 2 3   5


1 1 1 1 1      3
0 -1 0 -1 -1  -1
1 2 1 2 3      5

1 1 1 1 1     3
0 -1 0 -1 -1  -1
0 -1 0 -1 -2  -2

darf ich das so machen oder ist das komplett falsch?



1 1 1 1 1     3
0 -1 0 -1 -1  -1
0 0 0 0 1      1




Bezug
                        
Bezug
Parameterform: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Di 13.11.2012
Autor: M.Rex

Hallo

> Hallo und danke für die rasche Antwort,
>  
> bei mir darf man leider gar nichts annehmen :( Mein
> Schulmathe ist leider doch schon einige Jahre her und davor
> habe ich eine Handelsakademie besucht. Ich wusste bis dahin
> nicht einmal was eine Matrix ist und Gleichungssysteme in
> dieser Form hatte ich nie. (ich werde das noch im Profil
> ergänzen)
>  
> Bedeutet die Darstellung in Parameterform einfach nur in
> vektorieller Form? Das ist dann leicht :).

Das ist es.

>  
> Ich habe jetzt mal versucht das Gleichungssystem in
> folgende Form zu bringen: (sorry für die Darstellung, ich
> werde mir noch ansehen, wie ich das schön formatieren
> kann)
>  
>
> 1 1 1 1 1   3
>  1 2 1 2 2   4
>  1 2 1 2 3   5
>  
>
> 1 1 1 1 1      3
>  0 -1 0 -1 -1  -1
>  1 2 1 2 3      5
>  
> 1 1 1 1 1     3
>  0 -1 0 -1 -1  -1
>  0 -1 0 -1 -2  -2
>  
> darf ich das so machen oder ist das komplett falsch?
>  
>
>
> 1 1 1 1 1     3
>  0 -1 0 -1 -1  -1
>  0 0 0 0 1      1
>  
>
>  

Wo sind denn die Parameter hin?

Du hast:

[mm]\begin{vmatrix}x_1+x_2+x_3+x_4+x_5=3\\ x_1+2x_2+x_3+2x_4+2x_5 = 4 \\ x_1+2x_2+x_3+2x_4+3x_5=5 \end{vmatrix}[/mm]

Nehmen wir Diophants Tipp [mm] x_4=r [/mm] und [mm] x_5=s [/mm] ergibt sich:

[mm]\begin{vmatrix}x_1+x_2+x_3+r+s=3\\ x_1+2x_2+x_3+2r+2s = 4 \\ x_1+2x_2+x_3+2r+3s=5 \end{vmatrix}[/mm]
Sortieren
[mm]\begin{vmatrix}x_1+x_2+x_3=3-r-s\\ x_1+2x_2+x_3 = 4-2r-2s \\ x_1+2x_2+x_3=5-2r-3s \end{vmatrix}[/mm]

Löse dieses nun nach den verbliebenden x-Werten.

Also:

[mm]\begin{vmatrix}x_1+x_2+x_3=3-r-s\\ x_1+2x_2+x_3 = 4-2r-2s \\ x_1+2x_2+x_3=5-2r-3s \end{vmatrix}[/mm]
[mm]\stackrel{I-II}{\Leftrightarrow}\begin{vmatrix}x_1+x_2+x_3=3-r-s\\ -x_2 = -1+r+s \\ x_1+2x_2+x_3=5-2r-3s \end{vmatrix}[/mm]

Bestimme nun noch [mm] x_{1} [/mm] und [mm] x_{3} [/mm]

Die Lösung solltest du danach in der folgenden Form schreiben.

[mm] \vec{x}=\vektor{x_{1}\\ x_{2}\\ x_{3}\\ x_{4}\\ x_{5}}=\vektor{\ldots\\ -1\\ \ldots\\ 0\\ 0}+r\cdot\vektor{\ldots\\ 1\\ \ldots\\ 1\\ 0}+s\cdot\vektor{\ldots\\1\\ \ldots\\ 0\\ 1} [/mm]

Marius


Bezug
                                
Bezug
Parameterform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Di 13.11.2012
Autor: prinzessin258

Danke für Deine ausführliche Antwort.

Leider komme ich aber nicht weiter :(.

Ich habe versucht, x1 und x3 auszurechnen, bleibe aber leider hängen :(

x1+x2+x3    = 3 – r – s
x1+2x2+x3   =4 - 2r - 2s -I
x1+2x2+x3   =5 - 2r - 3s

x1+x2+x3    =  3 –r -s
-x2         = -1 +r +s
x1+2x2+x3   = 5 -2r -3s -I

x1+x2+x3    = 3 – 3 –s
-x2         = -1 +r +s
-x2         = -2 +r +2s -II

x1+x2+x3    = 3 -r -s
-x2         = -1 +r +s
0           = 1 - s

bin dankbar für jede Hilfe.



Bezug
                                        
Bezug
Parameterform: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mi 14.11.2012
Autor: Diophant

Hallo,

ich fürchte, ichg habe da auch zunächst etwas übersehen, was dir jetzt vermutlich das Leben schwer macht.

Wenn du in der Augangsversion deines LGS mal die Zeilen 2 und 3 genau betrachtest, dann folgt durch Subtraktion

[mm] x_5=1 [/mm]

Jetzt aber Achtung! Wenn man das einsetzt, dann sehen die Zeilen 2 und 3 identisch aus. D.h, du hast jetzt ein 2x4-LGS und benötigst weiterhin 2 Parameter. Probiere es nohcmal so, also

1 1 | 2-r-s
1 2 | 2-r-2s

Dabei habe ich [mm] x_3=r [/mm] und [mm] x_4=s [/mm] gesetzt.


Gruß, Diophant

Bezug
                                                
Bezug
Parameterform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 Mi 14.11.2012
Autor: prinzessin258

Danke für deine Antwort und Hilfe

ist die richtige lösung nun:

x2 = -s
x1 = 2 - r
(Die Darstellung als Vektor kann ich leider noch nicht)
2 1 0
0 0 -1
0 1 0
0 0 1
1 0 0


Bezug
                                                        
Bezug
Parameterform: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Mi 14.11.2012
Autor: Diophant

Hallo,

> Danke für deine Antwort und Hilfe
>
> ist die richtige lösung nun:
>
> x2 = -s
> x1 = 2 - r

ja, so ist es.

> (Die Darstellung als Vektor kann ich leider noch nicht)
> 2 1 0
> 0 0 -1
> 0 1 0
> 0 0 1
> 1 0 0
>

Man kann die LÖsungsmenge entweder so angeben:

[mm]\IL=\{2-r;-s;r;s;1\}[/mm]

oder so:

[mm] \vec{x}=\vektor{2\\0\\0\\0\\1}+r*\vektor{-1\\0\\1\\0\\0}+s*\vektor{0\\-1\\0\\1\\0} [/mm]

Wenn dir letzteres nichts sagt, dann war mit Parameterform wohl doch meine erste Schreibweise gemeint.


Gruß, Diophant

Bezug
                                                                
Bezug
Parameterform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 Mi 14.11.2012
Autor: prinzessin258

Spitze vielen vielen Dank, eine Frage hätte ich noch:

Ich hatte zuerst die I und II Zeile subtrahiert und für x2 = 1 -r-s erhalten.
Wie kann das sein? Es müsste doch auf unterschiedlichen Wegen zur selben Lösung führen?

GlG

Bezug
                                                                        
Bezug
Parameterform: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Mi 14.11.2012
Autor: Diophant

Hallo,

zu Beginn waren ja die Parameter anders gewählt, daher das abweichende Ergebnis. Ich hatte auch erst nachher gemerkt, dass [mm] x_5=1 [/mm] ist und das dann daraufhin geändert.


Gruß, Diophant

Bezug
                                                                                
Bezug
Parameterform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Do 15.11.2012
Autor: prinzessin258

Danke für deine Hilfe,

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]