matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungParameterbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Parameterbestimmung
Parameterbestimmung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterbestimmung: Berechnung
Status: (Frage) beantwortet Status 
Datum: 11:44 Sa 31.10.2009
Autor: huihu

Hallo,
ich komme bei dieser aufgebe einfach nicht weiter:

Für welche Werte des Parameters c element R
hat f(x)= [mm] 0,5x^3-x^2 [/mm] +2x+c

drei, zwei, eine, keine Nullstelle

wie soll man da denn vorgehen.

mir reicht ein hinweis, ich habe zurzeit differentialrechnung.

zuerst dachte ich man sollte vielleicht polynomdivision machen und dann irgentwas mit c aber das ergibt keinen sinn

danke für eure hilfe!!

        
Bezug
Parameterbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Sa 31.10.2009
Autor: steppenhahn

Hallo!

> Für welche Werte des Parameters c element R
>  hat f(x)= [mm]0,5x^3-x^2[/mm] +2x+c
>  
> drei, zwei, eine, keine Nullstelle

Prüfe eventuell nochmal die Funktion, die du hier gepostet hast, denn die Lösung ist sonst ziemlich einfach...

Also, wir können zwar mit normalen Schulmitteln nicht die Nullstellen von Polynomen 3. Grades bestimmen, aber du kannst folgende Überlegung anstellen: Eine rationale Funktion 3. Grades kann entweder zwei Extrempunkte haben oder gar keinen. Je nachdem, ob die erste Ableitung für irgendein x den Wert 0 annimmt oder nicht. (Schau dir mal [mm] x^{3} [/mm] - [mm] x^{2} [/mm] an, die Funktion hat zum Beispiel zwei Extrempunkte, [mm] x^{3} [/mm] jedoch nicht).

Wenn die Funktion 3. Grades nun zwei Extrempunkte hat, dann kann es durchaus sein, dass sie 3 Nullstellen aufweist, nämlich genau dann, wenn die Nullstellen "zwischen" den Extrempunkten liegen.
Ansonsten kann es nicht passieren, dass die Funktion 3 Nullstellen aufweist, sie hat dann garantiert nur eine.

Du solltest also bei deiner Funktion mal die Ableitung bestimmen und schauen :-)

Grüße,
Stefan


Bezug
                
Bezug
Parameterbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 Sa 31.10.2009
Autor: huihu

danke schonmal,
aber wie kann eine funktion 3.ten grades keinen extremwert haben?

Bezug
                        
Bezug
Parameterbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Sa 31.10.2009
Autor: Al-Chwarizmi


> danke schonmal,
>  aber wie kann eine funktion 3.ten grades keinen extremwert
> haben?

Wenn sie streng monoton ist wie z.B. die einfachste
derartige Funktion [mm] f(x)=x^3 [/mm] .

LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]