Parabelscharen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Gegeben ist die Funktion ft mit ft(x)=0,25x²-tx+9 ; x, t E R.
Bestimmen Sie t so,dass der Scheitel der zugehörigen Parabel auf der x-Achse liegt. |
Hallo,
also oben habe ich die gegebene Aufgabe wortwörtlich aufgeschrieben.
Anhand dessen weiß ich ja jetzt, dass diese Parabel eine Doppelnullstelle hat, bzw. einen Berührpunkt.
Allerdings weiß ich jetzt nicht wie ich vorgehen soll.
Ich hoffe, dass mir dabei jemand helfen kann.
Danke schonmal.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:36 Mi 23.03.2011 | Autor: | Loddar |
Hallo victoria,
!!
Bestimme zunächst wie gewohnt den x-Wert [mm] $x_s$ [/mm] des Scheitelpunktes (= Extremum) mittels Nullstellenberechnung der 1. Ableitung [mm] $f_t'(x_s) [/mm] \ = \ 0$ .
Anschließend muss gelten [mm] $f_t(x_s) [/mm] \ = \ [mm] 0{,}25*x_s^2-t*x_s+9 [/mm] \ = \ 0$ .
Diese Gleichung dann nach $t \ = \ ...$ auflösen.
Gruß
Loddar
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:41 Mi 23.03.2011 | Autor: | fred97 |
Ohne Differentialrechnung:
Bestimme die Lösungen der quadratischen Gl.
[mm] $0,25x^2-tx+9=0$
[/mm]
Dann schau nach, für welche t die beiden Lösungen gleich sind.
FRED
|
|
|
|