matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRegelungstechnikPIT1 mit positiven Pol
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Regelungstechnik" - PIT1 mit positiven Pol
PIT1 mit positiven Pol < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PIT1 mit positiven Pol: Ortskurve
Status: (Frage) beantwortet Status 
Datum: 15:25 Mo 07.07.2014
Autor: gotoxy86

Aufgabe
[mm] G_O\left(s\right)=K_R\br{2s+1}{s\left(s-1\right)} [/mm]

Wenn man einen positiven Pol hat, muss man ja das allg. Nyquist anwenden, und kann nicht mehr auf das spezille Nyquist zurückgreifen.

Ein Pit1 fängt ja bekanntlich bei </infty|-/infty j> an und geht von dort in den Ursprung.

Aber laut Lösung kommt sie von <-/infty|/infty j>, überkehrt die reelle Achse in der linken halbebene und geht von dort aus in den Ursprung.

Mir war bisher nicht bekannt, dass die Ortskurve auch andersherum verlaufen kann.

Also ist das richtig? Und wie verhält sich die Ortskurve im Detail, wenn ein Pol positiv ist.

        
Bezug
PIT1 mit positiven Pol: Umformen
Status: (Antwort) fertig Status 
Datum: 17:15 Mo 07.07.2014
Autor: Infinit

Hallo gotoxy86,
solch ein Kurvenverlauf kann natürlich möglich sein, das hängt von der Lage der Pol- und Nullstellen und der Vorzeichen ab.
Setze doch einfach mal
[mm] s = j \omega [/mm] und Du bekommst
[mm] G_0 (j \omega) = K_R \bruch{1 + j2 \omega}{-\omega^2 - j \omega} [/mm]
Wenn Du nun einen kleinen Wert für Omega einsetzt, siehst Du dass Deine Aussage stimmt. Eine Nullstelle ist natürlich auch dabei bei [mm] 1 + 2 j \omega =0 [/mm].
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]