PASCALsches Dreieck < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:49 Sa 02.05.2009 | Autor: | sunny435 |
Aufgabe | 8.a)Berechne.
(1) (a+b)³ aus (a+b)² (2) [mm] (a+b)^6 [/mm] aus [mm] (a+b)^5 [/mm] (3) [mm] (a+b)^9 [/mm] aus [mm] (a+b)^8
[/mm]
b) Welche Rolle spielen hierbei dir Konstruktionsprinzipien des PASCALschen Dreiecks? (Wie ergeben sih z.B. die Koeffizienten von (a+b)³ aus denen von (a+b)²
9. Entwickle den binomischen Term:
a) [mm] (x+1)^5 [/mm] b) [mm] (x-1)^5 [/mm] usw. ... |
hallo!
habn in der schule zu diesem thema nicht viel gemach aber solln zur übung die aufgabe für die klausur berechnen und ich komme damit gar nicht klar. Habe mir nochmal alles zum pascalschen dreieck angeguckt und es auch verstanden aber weiß hier echt nicht wie ich anfangen soll!
hab jetzt mal beide aufgaben hier gestellt, aber ich denke mal wenn mir das jemand erklärt komm ich mit dem rest auch alleine klar...
liebe grüße und danke schon mal im vorraus :)
sunny
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:53 Sa 02.05.2009 | Autor: | koepper |
Hallo sunny,
berechne erstmal [mm] $(a+b)^2$ [/mm] und dann damit [mm] $(a+b)^3$ [/mm] indem du verwendest:
[mm] $(a+b)^3 [/mm] = [mm] (a+b)^2 [/mm] * (a+b)$
Schreibe dabei die beiden Teile auf der rechten Seite: [mm] $(a+b)^2 [/mm] * a$ und [mm] $(a+b)^2 [/mm] * b$ so untereinander, daß Terme mit gleichen Variablen in den gleichen Potenzen untereinander stehen. Damit beantwortest du dann auch die Frage.
LG
Will
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:24 Sa 02.05.2009 | Autor: | sunny435 |
danke :) hast mich schon mal weiter gebracht... aber hab jetzt noch eine frage,
die zweite aufgabe ist ja dann [mm] (a+b)^6 [/mm] aus [mm] (a+b)^5
[/mm]
hier hab ich ja das problem dass ich [mm] (a+b)^5 [/mm] erstmal komplett ausklammern müsste... und durch das PASCALsche dreieck kann ich es mir ja einfacher machen da ich weiß dass es [mm] 1a^5 [/mm] + 5ab .... sein muss
aber schon als ich mir das angeguckt habe ha ich mich gefragt woher ich die potenzen von a und b immer wissen soll?
ich weiß dass es 1 5 10 10 5 1 ist... kann mir da jmd weiterhelfen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:33 Sa 02.05.2009 | Autor: | Rino |
du gehst einfach von links nach rechts durch, fängst bei $a$ mit der höchsten Potenz an und schiebst in jedem Schritt "eine Potenz" aufs $b$ rüber. also:
[mm] $1*a^5b^0+5*a^4b^1+10*a^3b^2+10*a^2b^3+5*a^1b^4+1*a^0b^5$
[/mm]
|
|
|
|
|
Aufgabe | a) berechne mit Hilfe der (allgemeinen) Binomischen Formeln:
(1) 1,01 ^4 (Anleitung 1,01 ^4 = [mm] (1+0,01)^4)
[/mm]
(2) 0,99 ^3 (3) [mm] 0,9^7
[/mm]
b) Begründe
(1) [mm] 1,001^5 \approx [/mm] 1,005
(2) [mm] 0,998^4 \approx [/mm] 1-0,008=0,992
(3) [mm] (1+a)^n \approx [/mm] 1+ na für betraglich kleine Werte von a |
vielen dank für die antworten gestern, das hab ich jetzt verstanden.
Aber zu der aufgabe oben (Auch eine die ich für meine klausur morgen brauche) fällt mir nicht viel ein
bei der a) würd ich sagen
(2) [mm] (0+0,99)^3 [/mm] stimmt auch wenn ich es mit dem TR berechne
(3) [mm] (0+0,9)^7
[/mm]
aber begründen kann ich das nicht vor allem nicht bei der b! danke schon mal
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 So 03.05.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
> a) berechne mit Hilfe der (allgemeinen) Binomischen
> Formeln:
> (1) 1,01 ^4 (Anleitung 1,01 ^4 = [mm](1+0,01)^4)[/mm]
> (2) 0,99 ^3 (3) [mm]0,9^7[/mm]
> b) Begründe
> (1) [mm]1,001^5 \approx[/mm] 1,005
> (2) [mm]0,998^4 \approx[/mm] 1-0,008=0,992
> (3) [mm](1+a)^n \approx[/mm] 1+ na für betraglich kleine Werte von
> a
> vielen dank für die antworten gestern, das hab ich jetzt
> verstanden.
> Aber zu der aufgabe oben (Auch eine die ich für meine
> klausur morgen brauche) fällt mir nicht viel ein
> bei der a) würd ich sagen
> (2) [mm](0+0,99)^3[/mm] stimmt auch wenn ich es mit dem TR berechne
> (3) [mm](0+0,9)^7[/mm]
> aber begründen kann ich das nicht vor allem nicht bei der
> b! danke schon mal
Hallo sunny,
Bei (2) ist sicher gemeint, dass man 0.99 als Differenz
schreiben:
$\ 0.99=1-0.01$
und dann darauf die binomische Formel ansetzen soll:
[mm] 0.99^3=(1-0.01)^3=1*1^3-3*1^2*0.01^1+3*1^1*0.01^2-1*0.01^3
[/mm]
Die entstehende Rechnung ist so einfach, dass man
sie auch ohne Taschenrechner leicht zustande bringen
kann, im Gegensatz zu deiner Idee mit [mm] (0+0.99)^3, [/mm] die
überhaupt keine Erleichterung der Rechnung bringt -
im Gegenteil.
Die Rechnung für a)(3) geht dann so:
$\ [mm] 0.9^7=(1-0.1)^7$
[/mm]
$\ [mm] =1-7*0.1+21*0.01-35*0.001+35*0.0001...\,-\,...$
[/mm]
$\ [mm] =1-0.7+0.21-0.035+0.0035\,-\,...\ \approx0.478...$ [/mm]
LG Al-Chw.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:09 So 03.05.2009 | Autor: | sunny435 |
vielen dank für die antwort!
|
|
|
|