Ortskurve < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 19:19 Di 23.11.2010 | Autor: | greenrock |
Hallo!
Ich komme gerade bei einer Aufgabe nicht weiter und bitte deshalb um eure Hilfe.
Also folgendes Problem. wir haben eine Funktion mit 2 Unbekannten bekommen [mm] f(x)=x^4-k*x^2. [/mm] Hiermit sollten wir zuerst eine Kurvendiskussion durchführen, hier liegt ja noch nicht das Problem.
Als nächstes wurde uns erklärt wie man das mit der Ortskurve ausrechnet, wofür wir die Extremstelle Wurzel k/2 verwendet haben. Als f(x) kam zunächst [mm] -k^2/4 [/mm] heraus. Klar das man hierfür den x-Wert in die Ausgangsfunktion einsetzen muss. Nur weiß ich nicht wie man dann auf das Ergebnis [mm] (-k^2/4) [/mm] gelangt??
Also man setzt ja ein f(Wurzel k/2)= (Wurzel [mm] k/2)^4-k*(Wurzel k/2)^2
[/mm]
nur verstehe ich das nicht so ganz wie man dann [mm] -k^2/4 [/mm] heraus bekommt.
Im Prinzip habe ich das mit der Ortskurve verstanden, nur sollen wir das jetzt mit der Wechselstelle machen.
Den x-Wert habe ich schon herausgefunden (Wurzel 2k/12), wobei ich hier auch noch einmal fragen möchte, ob das stimmt.
Nur kann mir bitte jemand helfen wie ich dann den y-Wert ausrechne?
Also muss den ja in f(x) einsetzen, nur kommt bei mir nichts raus ~.~
Danke im Voraus
LG
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:53 Di 23.11.2010 | Autor: | kuhfi |
Hi,
also erstmal zu deiner Wendestelle bzw. Wechselstelle, die ist so an sich richtig, ich würde den Bruch allerdings noch kürzen.
Dann zu dem Rechenweg für die Ordinate der Extremstelle:
So, wie du es aufgeschrieben hast, ist das schon der richtige Ansatz. Jetzt musst du die Exponenten halt nurnoch verrechnen, will heißen - wie bei dem [mm] x^4 [/mm] - die Wurzel entsprechend auflösen und die "restlichen" Exponenten noch verrechnen. Das mit der Wurzel sollte bei [mm]k*(\sqrt{k/2})^2[/mm] noch einfacher sein. :)
Hinterher sollten zwei Brüche rauskommen, die du einfach addieren bzw. subtrahieren musst, wo dann genau das von dir beschriebene [mm]-k^2/4[/mm] rauskommt.
Ich hoffe ich konnte helfen, wir hatten die gleiche Aufgabe auch heute.
|
|
|
|