matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenOrthonormalbasis finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Orthonormalbasis finden
Orthonormalbasis finden < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalbasis finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:30 Mo 18.07.2011
Autor: paula_88

Aufgabe
[mm] b_{1}=\vektor{3 \\ 1} b_{2}=\vektor{2 \\ 2} [/mm]

Zu finden ist eine Orthonormalbasis zu den Basisvektoren.

Hallo,
ich schreibe gleich eine Klausur und mir ist aufgefallen, dass ich gelernt habe eine Orthogonalbasis aufzustellen und nicht eine Orthonormalbasis :S
Was ist da eigentlich der Unterschied?

Jetzt versuche ich eine Orthonormalbasis zu erstellen und scheiter am rechnen.

[mm] v_{1}=\bruch{b_{1}}{\parallel b_{1}\parallel}=\bruch{1}{\wurzel{10}}\vektor{3 \\ 1} [/mm]

[mm] v_{2}=b_{2}-\cdot v_{1}=\vektor{2 \\ 2}-<\bruch{1}{\wurzel{10}}\vektor{3 \\ 1},\vektor{2 \\ 2}>\cdot\bruch{1}{\wurzel{10}}\vektor{3 \\ 1}=?? [/mm]
Hier scheiter ich beim zusammenrechnen.
Könnte mir das jemand bitte in kleinen Schritten einmal zeigen? Es ist dringend :-)

Vielen Dank, Paula

        
Bezug
Orthonormalbasis finden: Antwort
Status: (Antwort) fertig Status 
Datum: 10:58 Mo 18.07.2011
Autor: fred97

[mm] <\bruch{1}{\wurzel{10}}\vektor{3 \\ 1},\vektor{2 \\ 2}>= \bruch{1}{\wurzel{10}}(3*2+1*2) [/mm] = [mm] \bruch{8}{\wurzel{10}} [/mm]

FRED

Bezug
                
Bezug
Orthonormalbasis finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Mo 18.07.2011
Autor: Stoecki

es ist = [mm] \vektor{2 \\ 2} [/mm] - [mm] \bruch{8}{10} [/mm] * [mm] \vektor{3 \\ 1} [/mm] = [mm] \vektor{\bruch{4}{10} \\ - \bruch{12}{10}} [/mm]

der vektor ist jedoch nur orthogonal. du musst ihn noch normieren (also durch dessen länge teilen)

Bemerkung: zeih den skalar von [mm] <\bruch{1}{\wurzel{10}} \vektor{3 \\ 1}, \vektor{2 \\ 2}> [/mm] einfach raus. es gilt:
[mm] <\bruch{1}{\wurzel{10}} \vektor{3 \\ 1}, \vektor{2 \\ 2}> [/mm] = [mm] \bruch{1}{\wurzel{10}} [/mm] * < [mm] \vektor{3 \\ 1}, \vektor{2 \\ 2}> [/mm]

viel erfolg bei der klausur
gruß bernhard

Bezug
        
Bezug
Orthonormalbasis finden: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Mo 18.07.2011
Autor: Nisse


>  ich schreibe gleich eine Klausur und mir ist aufgefallen,
> dass ich gelernt habe eine Orthogonalbasis aufzustellen und
> nicht eine Orthonormalbasis :S
> Was ist da eigentlich der Unterschied?

Eine Orthonormalbasis ist eine normierte Orthogonalbasis, zusätzlich haben also alle Vektoren die Länge 1.

> [mm]v_{1}=\bruch{b_{1}}{\parallel b_{1}\parallel}=\bruch{1}{\wurzel{10}}\vektor{3 \\ 1}[/mm]

Dies ist genau die richtige Formel: Vektor durch Länge des Vektors ergibt neuen Vektor mit gleicher Richtung und Länge 1.

Aber wie multipliziert man nochmal eine Zahl [mm]\frac{1}{\wurzel{10}}[/mm] mit einem Vektor [mm]\vektor{3 \\ 1}[/mm]?

Bezug
                
Bezug
Orthonormalbasis finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:57 Mo 18.07.2011
Autor: Stoecki

[mm] \bruch{1}{\wurzel{10}} [/mm] * [mm] \vektor{3 \\ 1} [/mm] = [mm] \vektor{3 * \bruch{1}{\wurzel{10}}\\ 1 * \bruch{1}{\wurzel{10}}} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]