Orthogonalität von H-Polynomen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 20:16 So 30.04.2006 | Autor: | AT-Colt |
Aufgabe | 3b)
Die Hermite-Polynome [mm] $H_{n}(x) [/mm] := [mm] (-1)^{n} \cdot e^{x^2} \cdot \bruch{d^n}{dx^n} e^{-x^2}$ [/mm] sind Lösungen der linearen Differentialgleichung $y''(x)-2xy'(x)+2ny(x)=0$.
Man zeige, dass die Hermite-Polynome bzgl.des Skalarproduktes
$(f,g) := [mm] \integral_{-\infty}^{\infty}{f(x)g(x)e^{-x^2}dx}$
[/mm]
ein Orthogonalsystem von Polynomen sind. Dazu beweise man zunächst die Rekursionsformel [mm] $H_{n+1}(x) [/mm] = [mm] 2xH_{n}(x)-H_{n}'(x)$
[/mm]
und schließe daraus, dass [mm] $H_{n}$ [/mm] ein Polynom vom Grad n ist. |
Hallo Leute,
ich komme mal wieder nicht weiter :/
Ich habe mit relativer Leichtigkeit zeigen können, dass die Darstellung für [mm] $H_{n+1}$ [/mm] gilt und dass [mm] $H_{n}$ [/mm] ein Polynom n-ten Grades ist.
Leider habe ich es aber noch nicht geschafft, zu zeigen, dass [mm] $(H_{n},H_{m})$, [/mm] $n [mm] \not= [/mm] m > 0$ auch wirklich 0 ist.
Es scheinen entweder gerade oder ungerade Funktionen unter dem Integral aufzutreten, wobei der Wert der Funktion für betragsgroße x gegen 0 geht und die Flächen über und unter der x-Achse bei den geraden Funktionen gleich groß sind (bei den ungeraden Funktionen natürlich auch, aber da kann man auch einfach den Teil der Funktion links vom Ursprung mit dem rechts vom Ursprung vergleichen).
Der Ausdruck unter dem Integral wird zu (oBdA $m > n$)
[mm] $e^{x^2}\cdot\left(\bruch{d^{m}}{dx^{m}}e^{-x^2}\right)\cdot\left(\bruch{d^{n}}{dx^{n}}e^{-x^2}\right) [/mm] = [mm] e^{x^2}\cdot\left(\bruch{d^{m-n}}{dx^{m-n}}\left(\bruch{d^{n}}{dx^{n}}e^{-x^2}\right)\right)\cdot\left(\bruch{d^{n}}{dx^{n}}e^{-x^2}\right)$
[/mm]
Leider bin ich mir unsicher, wie mir dieses Wissen bei der Lösung der Aufgabe weiterhelfen soll, da mich die Ableitungen im Integranden etwas verwirren.
Vielleicht hat wieder jemand einen Schubser für mich?
greetz
AT-Colt
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Mi 03.05.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|