matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenOrthogonale Spannvektoren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Orthogonale Spannvektoren
Orthogonale Spannvektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Spannvektoren: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:37 Di 03.02.2009
Autor: Laokoon

Aufgabe
Bestimmen Sie zwei zueinander orthogonale Einheitsvektoren [mm]\vec e[/mm] und [mm]\vec f[/mm], die die Ebene

E: ( [mm] \vec x [/mm] - [mm]\begin{pmatrix} 3 \\ 5 \\ 3\end{pmatrix}[/mm] ) * [mm]\begin{pmatrix} 2 \\ 1 \\ 2\end{pmatrix}[/mm] = 0

aufspannen.

Hallo!

Ersteinmal hoffe ich das ich die Aufgabe verständlich eintragen konnte.
Meine Notizen zur Aufgabe waren bisher:

[mm]\vec e[/mm] * [mm] \vec f [/mm]  = 0

[mm]\vec e[/mm] * [mm]\vec n [/mm] = 0

[mm]\vec f[/mm] * [mm] \vec n [/mm] = 0

|[mm] \vec e [/mm]| = 1

|[mm] \vec f[/mm]| = 1

[mm] e_1[/mm] [mm] f_1[/mm] + [mm] e_2[/mm] [mm] f_2[/mm] + [mm] e_3[/mm] [mm] f_3[/mm] = 0

2[mm] e_1[/mm] + [mm] e_2[/mm] + 2[mm] e_3[/mm] = 0

2[mm] f_1[/mm] + [mm] f_2[/mm] +2[mm] f_3[/mm] = 0

Die Formeln für den Betrag und die Bestimmung des Einheitsvektors sind mir klar, jedoch brauch ich dafür ja die werte von [mm]\vec e[/mm] und [mm]\vec f[/mm] .

Keine sonderlich großen Erkenntnise, leider weiß ich nicht wie ich jetzt weiter machen soll.

Ich hoffe ich hab alles richtig gemacht, da das hier mein erster Post im matheraum ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Orthogonale Spannvektoren: Korrektur des Textes
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Di 03.02.2009
Autor: Laokoon

Tut mir Leid, für die fehlerhafte Version anfangs, ich hatte einen Quatsch gemacht. Ich hoffe jetzt ist alles OK : )

Mfg Laokoon

Bezug
        
Bezug
Orthogonale Spannvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Di 03.02.2009
Autor: angela.h.b.


> Bestimmen Sie zwei zueinander orthogonale Einheitsvektoren
> [mm]\vec[/mm] e und [mm]\vec[/mm] f, die die Ebene
>  
> E: ( [mm]\vec x[/mm] - [mm]\begin{pmatrix} 1 \\ 2 \\ -1\end{pmatrix}[/mm] ) *
> [mm]\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}[/mm] = 0
>
> aufspannen.
>  Hallo!
>  
> Ersteinmal hoffe ich das ich die Aufgabe verständlich
> eintragen konnte.
>  Meine Notizen zur Aufgabe waren bisher:
>  
> [mm]\vec e[/mm] * [mm]\vec f[/mm]  = 0
>  
> [mm]\vec e[/mm] * [mm]\vec n[/mm] = 0
>  
> [mm]\vec f[/mm] * [mm]\vec n[/mm] = 0
>  
> |[mm] \vec e [/mm]| = 1
>  
> |[mm] \vec f[/mm]| = 1

Hallo,

[willkommenmr].

Wenn ich alles richtig deute, so scheint Dir klar zu sein, daß Du zwei Einheitsvektoren [mm] \vec [/mm] e und [mm] \vec [/mm] f suchst, welche sowohl zueinander senkrecht sind als auch zu dem Normalenvektor der vorgegebenen Ebene, zu [mm] \vec [/mm] n = [mm] \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}. [/mm]

>  
> [mm]e_1[/mm] [mm]f_1[/mm] + [mm]e_2[/mm] [mm]f_2[/mm] + [mm]e_3[/mm] [mm]f_3[/mm] = 0
>  
> 2[mm] e_1[/mm] + [mm]e_2[/mm] + 2[mm] e_3[/mm] = 0
>  
> 2[mm] f_1[/mm] + [mm]f_2[/mm] +2[mm] f_3[/mm] = 0

Die beiden letzten der Gleichungen verstehe ich nicht. Ich dachte eigentlich, daß es die Skalarprodukte mit dem Normalenvektor sein sollen, aber das ist nicht der Fall, und ich komme nicht dahinter, was Du Dir gedacht hast.

Zur weiteren Vorgehensweise: einen Vektor, welcher senkrecht ist zu [mm] \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} [/mm] sieht man ja sofort, und wenn Du den hast, reduziert sich das Problem auf das Finden nur eines Vektors.

Gruß v. Angela









>  
> Die Formeln für den Betrag und die Bestimmung des
> Einheitsvektors sind mir klar, jedoch brauch ich dafür ja
> die werte von [mm]\vec e[/mm] und [mm]\vec f[/mm] .
>  
> Keine sonderlich großen Erkenntnise, leider weiß ich nicht
> wie ich jetzt weiter machen soll.
>  
> Ich hoffe ich hab alles richtig gemacht, da das hier mein
> erster Post im matheraum ist.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Orthogonale Spannvektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Di 03.02.2009
Autor: Laokoon

Tut mir schrecklich leid, ich hatte ausversehen den falschen Vektor angegeben, bei all dem Kuddelmuddel in meinem Matheheft.. Habe jetzt auch nochmal die letzten Fehler im Text behoben..
Nun steht aber die richtige Version!
Nocheinmal entschuldigung, und vielen Dank schonmal für die Mühe. Es ist also ein wenig komplizierter..

Grüße.

Bezug
        
Bezug
Orthogonale Spannvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Di 03.02.2009
Autor: angela.h.b.


> Bestimmen Sie zwei zueinander orthogonale Einheitsvektoren
> [mm]\vec e[/mm] und [mm]\vec f[/mm], die die Ebene
>  
> E: ( [mm]\vec x[/mm] - [mm]\begin{pmatrix} 3 \\ 5 \\ 3\end{pmatrix}[/mm] ) *
> [mm]\begin{pmatrix} 2 \\ 1 \\ 2\end{pmatrix}[/mm] = 0
>
> aufspannen.
>  Hallo!
>  
> Ersteinmal hoffe ich das ich die Aufgabe verständlich
> eintragen konnte.
>  Meine Notizen zur Aufgabe waren bisher:
>  
> [mm]\vec e[/mm] * [mm]\vec f[/mm]  = 0
>  
> [mm]\vec e[/mm] * [mm]\vec n[/mm] = 0
>  
> [mm]\vec f[/mm] * [mm]\vec n[/mm] = 0
>  
> |[mm] \vec e [/mm]| = 1
>  
> |[mm] \vec f[/mm]| = 1
>  
> [mm]e_1[/mm] [mm]f_1[/mm] + [mm]e_2[/mm] [mm]f_2[/mm] + [mm]e_3[/mm] [mm]f_3[/mm] = 0
>  
> 2[mm] e_1[/mm] + [mm]e_2[/mm] + 2[mm] e_3[/mm] = 0
>  
> 2[mm] f_1[/mm] + [mm]f_2[/mm] +2[mm] f_3[/mm] = 0
>  
> Die Formeln für den Betrag und die Bestimmung des
> Einheitsvektors sind mir klar, jedoch brauch ich dafür ja
> die werte von [mm]\vec e[/mm] und [mm]\vec f[/mm] .

Hallo,

gut, so paßt das ja jetzt zusammen.

An der von mir vorgeschlagenen Vorgehensweise ändert sich eigentlich nichts, bis auf daß man nun ein kleines bißchen genauer gucken muß, um einen zu [mm] \vec{n} [/mm] senkrechten Vektor zu finden.

Versuch's mal einen zu finden, dessen (z.B.) mittlere Komponente =0 ist, und der senkrecht zu [mm] \vec{n} [/mm]  ist.

Wenn Du den hast, ermittelst Du den anderen, und zum Schluß wird alles normiert (=zu Einheitsvektoren gemacht).

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]