matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenProzesse und MatrizenOrthogonale Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Prozesse und Matrizen" - Orthogonale Matrix
Orthogonale Matrix < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Matrix: Wählen Sie alpha, sodass...
Status: (Frage) beantwortet Status 
Datum: 13:29 Di 19.01.2016
Autor: LPark

Aufgabe
Bestimmen Sie Werte für alpha so, dass A eine orthogonale Matrix ist.


[mm] A=\pmat{ \alpha & (1/2) \\ -(1/2) & \alpha } [/mm]

Für eine orthogonale Matrizen muss doch gelten:

Z1S1*Z1S2 + Z2S1*Z2S2 = 0 (Z = Zeile und S = Spalte)

Aber wie ich dann auf das [mm] \alpha [/mm] komme, weiß ich leider nicht..



        
Bezug
Orthogonale Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Di 19.01.2016
Autor: fred97


> Bestimmen Sie Werte für alpha so, dass A eine orthogonale
> Matrix ist.
>  [mm]A=\pmat{ \alpha & (1/2) \\ -(1/2) & \alpha }[/mm]
>  
> Für eine orthogonale Matrizen muss doch gelten:
>  
> Z1*Z2 + S1*s2 = 0 (Z = Zeile und S = Spalte)
>  
> Aber wie ich dann auf das [mm]\alpha[/mm] komme, weiß ich leider

Du hast noch eine Bedingung vergessen: die Zeilenvektoren müssen die Länge 1 haben.

FRED

> nicht..
>  
>  


Bezug
                
Bezug
Orthogonale Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Di 19.01.2016
Autor: LPark

Also wenn ich:

[mm] |\vektor{\alpha \\ \bruch{1}{2}}| [/mm] = [mm] \wurzel{\alpha^2+\bruch{1}{4}} [/mm] = 1

=> [mm] \alpha^2 [/mm] + [mm] \bruch{1}{4} [/mm] = 1
   [mm] \alpha [/mm] = [mm] \wurzel{-\bruch{3}{4}} [/mm]

Und was bringt mir das?

Bezug
                        
Bezug
Orthogonale Matrix: Okay
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:46 Di 19.01.2016
Autor: LPark

Okay, ich habs mal mit + [mm] \bruch{1}{2} [/mm] durchgerechnet.
So komme ich auf das Ergebnis.
Danke. ^^

Bezug
                                
Bezug
Orthogonale Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:53 Di 19.01.2016
Autor: angela.h.b.


> Okay, ich habs mal mit + [mm]\bruch{1}{2}[/mm] durchgerechnet.
>  So komme ich auf das Ergebnis.

???

Ich verstehe nicht, was Du meinst...

LG Angela

>  Danke. ^^


Bezug
                        
Bezug
Orthogonale Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Di 19.01.2016
Autor: angela.h.b.


> Also wenn ich:
>  
> [mm]|\vektor{\alpha \\ \bruch{1}{2}}|[/mm] =
> [mm]\wurzel{\alpha^2+\bruch{1}{4}}[/mm] = 1
>  
> => [mm]\alpha^2[/mm] + [mm]\bruch{1}{4}[/mm] = 1
>     [mm]\alpha[/mm] = [mm]\wurzel{-\bruch{3}{4}}[/mm]
>  
> Und was bringt mir das?

Hallo,

da man, wenn man in den reellen Zahlen rechnet, aus negativen Zahlen nicht die Wurzel ziehen kann, würde Dir dieses Ergebnis sagen:
es gibt kein [mm] \alpha [/mm] mit der gesuchten Eigenschaft.

Allerdings ist bei mir [mm] 1-\bruch{1}{4}=\red{+}\bruch{3}{4}, [/mm]
womit die Chancen, eine orthogonale Matrix zu finden, immens wachsen...

LG Angela


Bezug
                                
Bezug
Orthogonale Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:58 Di 19.01.2016
Autor: fred97


> > Also wenn ich:
>  >  
> > [mm]|\vektor{\alpha \\ \bruch{1}{2}}|[/mm] =
> > [mm]\wurzel{\alpha^2+\bruch{1}{4}}[/mm] = 1
>  >  
> > => [mm]\alpha^2[/mm] + [mm]\bruch{1}{4}[/mm] = 1
>  >     [mm]\alpha[/mm] = [mm]\wurzel{-\bruch{3}{4}}[/mm]
>  >  
> > Und was bringt mir das?
>
> Hallo,
>  
> da man, wenn man in den reellen Zahlen rechnet, aus
> negativen Zahlen nicht die Wurzel ziehen kann, würde Dir
> dieses Ergebnis sagen:
>  es gibt kein [mm]\alpha[/mm] mit der gesuchten Eigenschaft.
>  
> Allerdings ist bei mir [mm]1-\bruch{1}{4}=\red{+}\bruch{3}{4},[/mm]
>  womit die Chancen, eine orthogonale Matrix zu finden,
> immens wachsen...

   sogar aufs Doppelte ....

FRED

>  
> LG Angela
>  


Bezug
                        
Bezug
Orthogonale Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Di 19.01.2016
Autor: Thomas_Aut

Hallo,

Eine weiter Möglichkeit, dass rasch auszurechnen ist :


Ist A eine orthogonale Matrix so ist $|det(A)|=1$

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]