matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesOrthogonale Gruppe, invertierb
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Orthogonale Gruppe, invertierb
Orthogonale Gruppe, invertierb < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Gruppe, invertierb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Mi 03.10.2012
Autor: Lu-

Aufgabe
O(V , [mm] \beta) =\{ \phi \in GL(V) : \beta(\ph(v),\phi(v))=\beta(v,w)\} [/mm]
[mm] \cong \{A \in GL_n (\IR) : A^t A = I_n \} [/mm] = [mm] \{A \in M_{n \times n} (\IR) : A^t A = I_n \} [/mm]

Hallo
Wieso ist  [mm] \{A \in GL_n (\IR) : A^t A = I_n \} [/mm] = [mm] \{A \in M_{n \times n} (\IR) : A^t A = I_n \} [/mm] .
Also wieso braucht man nicht vorrauszusetzten dass die Matrizen invertierbar sind??

Mfg Lu-

        
Bezug
Orthogonale Gruppe, invertierb: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Mi 03.10.2012
Autor: mathewelt

A ist invertierbar, weil det(A) ist nicht 0.

Bezug
                
Bezug
Orthogonale Gruppe, invertierb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Mi 03.10.2012
Autor: Lu-

Hallo,
danke für den Beitrag,

Wo kommt aber bei meinen angaben eine determinante vor??

Mfg Lu-

Bezug
                        
Bezug
Orthogonale Gruppe, invertierb: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Mi 03.10.2012
Autor: angela.h.b.


> Hallo,
>  danke für den Beitrag,
>  
> Wo kommt aber bei meinen angaben eine determinante vor??
>  
> Mfg Lu-

Hallo,

"vorkommen" tut natürlich keine Determinante.
Aber aus [mm] A^{T}A=I_n [/mm] kannst Du natürlich etwas über die Determinante erfahren, wenn Du möchtst.

Deine Frage war ja, weshalb  $ [mm] \{A \in GL_n (\IR) : A^t A = I_n \} [/mm] $ = $ [mm] \{A \in M_{n \times n} (\IR) : A^t A = I_n \} [/mm] $ .

Es ist, weil in den Mengen nur Matrizen A mit [mm] A^{T}A=I_n [/mm] betrachtet werden. Diese Matrizen sind natürlich invertierbar, denn sonst könnte ja nicht [mm] A^{T}A=I_n [/mm] sein.

LG Angela




Bezug
                        
Bezug
Orthogonale Gruppe, invertierb: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Mi 03.10.2012
Autor: mathewelt

weil aus det(I)=1 folgt det(A) ist nicht 0

Bezug
                                
Bezug
Orthogonale Gruppe, invertierb: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Mi 03.10.2012
Autor: Lu-

danke dafür ;)
Mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]