matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteOrthogonale Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Skalarprodukte" - Orthogonale Abbildung
Orthogonale Abbildung < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Mi 14.01.2009
Autor: nina1

Aufgabe
Wir betrachten den euklidischen Vektorraum [mm] \IR^2 [/mm] mit dem Standardskalarprodukt [mm] <\vec{x}, \vec{y}>:= [/mm] x1y1 + x2y2

und die Matrix-Abbildung A: [mm] \IR^2 [/mm] -> [mm] \IR^2 [/mm]  
[mm] \vektor{x1 \\ x2} [/mm] -> [mm] \vektor{a11x1 + a12x2 \\ a21x2 + a22x2} [/mm]

Sei [mm] \vec{b} [/mm] = [mm] \vektor{5 \\ -2} [/mm]

Berechnen Sie die Koeffizienten a11, a12, a21, a22 [mm] \in \IR [/mm]  sodass
1. der erste Spaltenvektor der Matrix A die Länge 1 hat und in dieselbe Richtung zeigt wie [mm] \vek{b} [/mm]
und 2. die Matrix-Abbildung A orthogonal ist.

Hallo,

meine Frage ist jetzt, wie ich den ersten Spaltenvektor so berechne, dass er in die selbe Richtung zeigt wie [mm] \vec{b}? [/mm]

Ich habe mir gedacht, dass der Betrag von [mm] \vec{b} \wurzel{29} [/mm] ist und demnach ich rechnen muss [mm] 5/\wurzel{29} [/mm] fuer die erste Koordinate und [mm] -2/\wurzel{29} [/mm] fuer die zweite?

Wenn ich den ersten Spaltenvektor habe dann brauche ich beim 2.Spaltenvektor ja nur die Koordinaten vertauschen und oben ein Minus dranmachen. oder?

Danke und Gruss Nina



        
Bezug
Orthogonale Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Mi 14.01.2009
Autor: angela.h.b.


> Wir betrachten den euklidischen Vektorraum [mm]\IR^2[/mm] mit dem
> Standardskalarprodukt [mm]<\vec{x}, \vec{y}>:=[/mm] x1y1 + x2y2
>  
> und die Matrix-Abbildung A: [mm]\IR^2[/mm] -> [mm]\IR^2[/mm]  
> [mm]\vektor{x1 \\ x2}[/mm] -> [mm]\vektor{a11x1 + a12x2 \\ a21x2 + a22x2}[/mm]
>  
> Sei [mm]\vec{b}[/mm] = [mm]\vektor{5 \\ -2}[/mm]
>
> Berechnen Sie die Koeffizienten a11, a12, a21, a22 [mm]\in \IR[/mm]  
> sodass
>  1. der erste Spaltenvektor der Matrix A die Länge 1 hat
> und in dieselbe Richtung zeigt wie [mm]\vek{b}[/mm]
>  und 2. die Matrix-Abbildung A orthogonal ist.
>  Hallo,
>  
> meine Frage ist jetzt, wie ich den ersten Spaltenvektor so
> berechne, dass er in die selbe Richtung zeigt wie [mm]\vec{b}?[/mm]
>  
> Ich habe mir gedacht, dass der Betrag von [mm]\vec{b} \wurzel{29}[/mm]
> ist und demnach ich rechnen muss [mm]5/\wurzel{29}[/mm] fuer die
> erste Koordinate und [mm]-2/\wurzel{29}[/mm] fuer die zweite?
>  
> Wenn ich den ersten Spaltenvektor habe dann brauche ich
> beim 2.Spaltenvektor ja nur die Koordinaten vertauschen und
> oben ein Minus dranmachen. oder?
>  
> Danke und Gruss Nina

Hallo,

ja, so ist es.

Und wenn du mithilfe des eleditors noch Indizes setzt, sieht alles schöner aus.

Gruß v. Angela

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]