Orientierte Flächeninhalte < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:24 Mo 23.10.2006 | Autor: | destilo |
Aufgabe | Eine Waldfläche wird jährlich durch Einschlag um 10 ha verringert. Nach 5 Jahren wird wieder aufgeforstet. Dadurch nimmt die Waldfläche jährlich um 7 ha zu.
a) Um wie viel ha hat sich die Fläche nach 2 [ nach 4, 7, 9, t ] Jahren geändert?
b) Nach wie viel Jahren ist die ursprüngliche Größe wieder erreicht?
c) Es sei f die Funktion Zeitdauer (in a) ---> Aufforstungsgeschwindigkeit ( in [mm]\bruch{ha}{a}[/mm]).
Zeichne den Graphen der Funktion f.
Was bedeutet [mm]\integral_{0}^{9} f(t)\, dt [/mm]? Bestimme den Wert dieses Integrals. Deute es als Summe orientierter Flächeninhalte. |
Ich war in der letzten Mathe Unterrichtsstunde wegen Krankheit nicht anwesend. Daher kann ich nicht so richtig viel mit dieser Aufgabe anfangen. Ich hab nicht einmal einen Ansatz. Also bei Teil a) würde ich dann einfach so rechnen:
Durch Einschlag wird die Waldfläche um 10 ha verringert und durch die Aufforstung nimmt die Fläche um 7 ha zu.
-10ha + 7ha = -3ha. Dadurch erhalte ich dann nach 2 Jahren eine Veränderung um -6ha. Ich glaube aber das dieser Ansatz schon falsch ist. Deswegen wollte ich mir hier Hilfe einholen. Ich hoffe ihr könnt mir beim Lösen der Aufgabe behilflich sein. Danke schon mal im vorraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:01 Mo 23.10.2006 | Autor: | chrisno |
Hallo destilo,
die Aufgabe ist wohl so gemeint, dass erst mal 5 Jahre lang abgeholzt wird. Danach wird nicht mehr abgeholzt, sondern nur aufgeforstet. Zuerst ist f(t) also negativ, dann springt sie auf positiv um. Das Integral gibt dann die Anderung der Waldmenge in dem Zeitraum der Integrationsgrenzen an.
|
|
|
|
|
Hallo destilo,
> Eine Waldfläche wird jährlich durch Einschlag um 10 ha
> verringert. Nach 5 Jahren wird wieder aufgeforstet. Dadurch
> nimmt die Waldfläche jährlich um 7 ha zu.
>
> a) Um wie viel ha hat sich die Fläche nach 2 [ nach 4, 7,
> 9, t ] Jahren geändert?
Sei [mm] W_0=W(0) [/mm] die anfängliche Waldfläche,
dann gilt:
W(1) = [mm] W_0 [/mm] - 1*10
W(2) = [mm] W_0 [/mm] - 2*10
...
W(t) = [mm] W_0 [/mm] - t*10
>
> b) Nach wie viel Jahren ist die ursprüngliche Größe wieder
> erreicht?
[mm] W_0 [/mm] = W(5) + (t-5)*7 mit t>5
>
> c) Es sei f die Funktion Zeitdauer (in a) --->
> Aufforstungsgeschwindigkeit ( in [mm]\bruch{ha}{a}[/mm]).
> Zeichne den Graphen der Funktion f.
Aufforstungsgeschwindigkeit
$f(t) = [mm] \begin{cases} -10, & \mbox{für } 05 \end{cases}$
[/mm]
Kannst du diese Funktion mal zeichnen?
> Was bedeutet [mm]\integral_{0}^{9} f(t)\, dt [/mm]? Bestimme den
> Wert dieses Integrals. Deute es als Summe orientierter
> Flächeninhalte.
Das Intergral berechnet nun die (geometrischen) Flächen zwischen f(t) und der x-Achse.
Was sind das nun für Flächen?
Dazu muss man nicht integrieren können.
> Ich war in der letzten Mathe Unterrichtsstunde wegen
> Krankheit nicht anwesend. Daher kann ich nicht so richtig
> viel mit dieser Aufgabe anfangen. Ich hab nicht einmal
> einen Ansatz. Also bei Teil a) würde ich dann einfach so
> rechnen:
> Durch Einschlag wird die Waldfläche um 10 ha verringert und
> durch die Aufforstung nimmt die Fläche um 7 ha zu.
> -10ha + 7ha = -3ha. Dadurch erhalte ich dann nach 2 Jahren
> eine Veränderung um -6ha. Ich glaube aber das dieser Ansatz
> schon falsch ist. Deswegen wollte ich mir hier Hilfe
> einholen. Ich hoffe ihr könnt mir beim Lösen der Aufgabe
> behilflich sein. Danke schon mal im vorraus.
Abholzung und Aufforstung geschehen ja zu verschiedenen Zeitabschnitten, das darfst du nicht einfach gegenrechnen.
Gruß informix
|
|
|
|