matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenOrdnungsrelation nachweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Relationen" - Ordnungsrelation nachweisen
Ordnungsrelation nachweisen < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnungsrelation nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Di 22.03.2011
Autor: Kueken

Aufgabe
Für zwei natürliche Zahlen n,m [mm] \in [/mm] N schreiben wir n|m, falles es eine ganze Zahl 0<k [mm] \in [/mm] Z gibt mit m=n *k
Zeigen Sie, dass | eine Ordnungsrelation auf N definiert.

Nochmal Hallo!
Hier stecke ich bei der Antisymmetrie fest.
Also ich hab ja gegeben, dass n | m und m | n
Daher weiß ich, dass m= n*k und n=m*k'
Nun hab ich die beiden Gleichungen addiert um irgendwie auf n=m zu kommen.
m+n= nk + mk'
umformen ergibt dann
n=m [mm] \bruch{k'-1}{1-k} [/mm]

Ich weiß ja jetzt aus der Gleichung nur, dass n=m gilt falls k'=k ist, aber nicht für alle Verhältnisse von k' und k. Mir fehlt da irgendwie der Schluss das k'=k sein muss und daraus dann folgt, dass n=m gilt.

Wäre super, wenn da jemand wüsste wie es weiter geht.
Dankeschön schonmal und Viele Grüße
Kerstin

        
Bezug
Ordnungsrelation nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Di 22.03.2011
Autor: kamaleonti

Moin Kerstin,
> Für zwei natürliche Zahlen n,m [mm]\in[/mm] N schreiben wir n|m,
> falles es eine ganze Zahl 0<k [mm]\in[/mm] Z gibt mit m=n *k
>  Zeigen Sie, dass | eine Ordnungsrelation auf N definiert.
>  Nochmal Hallo!
>  Hier stecke ich bei der Antisymmetrie fest.
> Also ich hab ja gegeben, dass n | m und m | n
>  Daher weiß ich, dass m= n*k und n=m*k'
>  Nun hab ich die beiden Gleichungen addiert um irgendwie
> auf n=m zu kommen.

Einfacher geht es, wenn du eine Gleichung in die andere einsetzt:
[mm] \qquad [/mm] $m=n*k=(m*k')*k$
Da [mm] k,k'\geq [/mm] 1 folgt k'=k=1 und daher m=n (jeweils aus den beiden Ausgangsgleichungen)

> m+n= nk + mk'
>  umformen ergibt dann
> n=m [mm]\bruch{k'-1}{1-k}[/mm]
>  
> Ich weiß ja jetzt aus der Gleichung nur, dass n=m gilt
> falls k'=k ist, aber nicht für alle Verhältnisse von k'
> und k. Mir fehlt da irgendwie der Schluss das k'=k sein
> muss und daraus dann folgt, dass n=m gilt.
>
> Wäre super, wenn da jemand wüsste wie es weiter geht.
> Dankeschön schonmal und Viele Grüße
>  Kerstin

LG

Bezug
                
Bezug
Ordnungsrelation nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Di 22.03.2011
Autor: Kueken

Hi!

Danke für deine Antwort, aber das hier "Da  1 folgt k'=k=1" versteh ich nicht. Woraus ziehst du die Folgerung?

Liebe Grüße
Kerstin

Bezug
                        
Bezug
Ordnungsrelation nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Di 22.03.2011
Autor: kamaleonti


> Hi!
>  
> Danke für deine Antwort, aber das hier "Da [mm] k,k'\geq1 [/mm] folgt
> k'=k=1" versteh ich nicht. Woraus ziehst du die Folgerung?

Es ist mit $z=k*k'$
[mm] \qquad $m=n\cdot{}k=(m\cdot{}k')\cdot{}k=m*z$ [/mm]
Hieraus folgt z=1 (neutrales Element der Multiplikation).
Also gilt $k*k'=1$. Da aber [mm] k,k'\in\IZ^{+} [/mm] müssen beide 1 sein.

>  
> Liebe Grüße
>  Kerstin

LG

Bezug
                                
Bezug
Ordnungsrelation nachweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:29 Di 22.03.2011
Autor: Kueken

Ich Idiot...
Hat klick gemacht, danke dir =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]