matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorieOrdnungsrelation/Totalrelation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Graphentheorie" - Ordnungsrelation/Totalrelation
Ordnungsrelation/Totalrelation < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ordnungsrelation/Totalrelation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:26 Mo 17.11.2008
Autor: Roli772

Bin hier noch ein Newby und komme bei meinen Hausaufgaben nicht weiter: Vermutlich ist die Aufgabenstellung für die meisten ohnehin einfach, mir fällt der Lösungsweg jedoch schwer.

Sei [mm] (M,\subseteq) [/mm] eine geordnete Menge und R eine Relation auf M x M mit

[mm] (x_{1}, x_{2}) [/mm] R [mm] (y_{1}, y_{2}) [/mm] : [mm] \gdw x_{1} \subseteq y_{1} \wedge x_{2} \subseteq y_{2} [/mm]

Die Frage ist jetzt, ob die Relation eine Ordnungsrelation auf M x M ist?
Wenn aber  [mm] \subseteq [/mm] eine Totalordnung auf M ist, dann sollen wir auch prüfen, ob die Relation eine Totalordnung auf M x M ist.

Meine Überlegung wäre jetzt eben, die Ordnungsrelation auf ihre Eigenschaften zu prüfen: d.h. reflexiv, antisymetrisch und transitiv.

Reflexiv wäre in dem Fall korrekt, da: (xRx)
[mm] (x_{1}, x_{2}) [/mm] R [mm] (x_{1}, x_{2}) [/mm] : [mm] \gdw x_{1} \subseteq x_{1} \wedge x_{2} \subseteq x_{2} [/mm]

Bei den anderen beiden Fällen (trans./antisym.) komme ich jedoch nicht weiter. Vermutlich müsste ich bei transitiv eine Fallunterscheidung machen, um weiter zu kommen.

Vielen Dank für eure Hilfe!

Lg Sr

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ordnungsrelation/Totalrelation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:24 Mi 19.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]