matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraOrbits
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Orbits
Orbits < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orbits: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:27 Di 29.01.2013
Autor: hilbert

Hallo, ich bereite mich gerade auf die Klausur vor, und stehe vor folgendem Problem:

Wenn ich beispielsweise die Anzahl der Orbits bestimmen soll, in die die Menge der 2er Vektoren (a,b) mit a,b [mm] \in \IZ /8\IZ [/mm] unter der natürlichen Operation von [mm] SL(2,\IZ/8\IZ) [/mm] zerfällt. Wie gehe ich da genau  vor?

Nehme ich den 2er Vektor (0,0) so erhalte ich den Orbit der nur diesen enthält.

Nehme ich anschließend [mm] \vektor{\overline{1} \\ \overline{0}}*\pmat{ \overline{a} & \overline{b} \\ \overline{c} & \overline{c} } =\vektor{\overline{a} \\ \overline{c}}. [/mm] Wobei [mm] \overline{a} [/mm] und [mm] \overline{c} [/mm] noch durch [mm] \overline{a}\overline{d}-\overline{b}\overline{c}=\overline{1} [/mm] bestimmt sind.

Aber welche Vektoren bekomme ich nun damit abgedeckt? Gilt  müssen hier a und c teilerfremd sein (Lemma von Bezout) wie in [mm] \IZ [/mm] .

Wie mache ich nun weiter? Schonmal danke für die Hilfe!

        
Bezug
Orbits: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Do 31.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]