Optisches Problem < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:15 Sa 17.12.2011 | Autor: | clemenum |
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Aufgabe | Ein Beobachter sieht einen Gegenstand auf dem Grund eines Beckens. Vom Gegenstand ausgehende Lichtstrahlen werden beim Austritt an der Grenzfläche Wasser- Luft gebrochen (Brechnungsgesetz)
Gegeben seien $t,h,d$ und das Brechungsgesetz.
$\alpha...$ Einfallswinkel im Wasser
$\beta ... $ Brechungswinkel an der Luft
Lichtgeschwindigkeit im Luft: $c_L = 2,99703062\cdot 10^8 m/s$
Lichtgeschwindigkeit im Wasser: $c_w = 2,24888\cdot 10^8 m/s $
Man ermittle $x, \alpha, \beta$ |
Aus dem Brechungsgesetz $\frac{sin(\alpha)}{sin(\beta)}= \frac{c_W}{c_L} $ folgt $sin(\beta) = \frac{sin(\alpha)\cdot c_L }{c_W}$ und
(1) $\beta = arcsin \left( sin(\alpha) \cdot \frac{c_L}{c_W} \right ). $
Weiters gilt :
(2) $tan(\alpha) = \frac{d-x}{t}$ bzw. $x = d - t\cdot tan(\alpha) $
(3) $tan(\beta) = \frac{x}{h-t} $ bzw. $x = (h-t) \cdot tan(\beta) $
$(h-t)\cdot tan \left( arcsin(\alpha) \cdot \frac{c_L}{c_W }\right) = d - tan(\alpha) $
Lösungsvesuch mit Computeralgebrasystem:
$\alpha$ markieren und Symbolik/Variable/Auflösen ergibt "Kein symbolisches Ergebnis gefunden".
$(h-t) \cdot \left(arcsin(\alpha) \frac{c_L}{c_W }\right) = d - tan(\alpha) $ vereinfachen $\Rightarrow$
[-[(-h) + 1 ]] \cdot \frac{ sin\left(arcsin(\alpha) \frac{c_L } {c_W} \right)}{cos \left( arcsin(\alpha)\cdot
\frac{c_L}{c_W}\right)} = \frac{d\cdot cos(\alpha) - t\cdot sin(\alpha) }{cos(\alpha) }
$\alpha$ markieren und Symbolik/Auswerten/Symbolisch bringt keine Änderung.
Auch nicht mit Symbolik/Vereinfachen, Erweitern, Faktorisieren, usw.
Es bleibt die Frage offen: Wie kann die Gleichung nach $\alpha$ umgestellt werden? Handelt es sich um ein lösbares Problem?
P.S. Es ist ein rein mathematisches Problem; das physikalische Problem dahinter ist gelöst^^
|
|
|
|
Hallo!
Ich denke nicht, daß du eine analytische Lösung für dein Problem finden wirst. Zumindest nicht bei diesem Ansatz.
Der ist zwar physikalisch richtig, läßt sich aber schwer berechnen. Mußt du diesen Weg gehen, oder gehts auch anders?
Eine Folgerung aus dem Brechungsgesetz ist nämlich, daß das Licht stets den zeitlich kürzesten weg nimmt. Deshalb die Strecke im Wasser gering halten, und dann eine größere Strecke an der Luft, dafür aber mit höherer Geschwindigkeit zurück legen.
In diesem Ansatz ist alleine x unbekannt, denn er kommt völlig ohne Winkel aus.
Es gibt sicher noch andere Möglichkeiten, die ich grade nicht sehe, aber mit deinem jetzigen Ansatz kommst du nicht weiter.
|
|
|
|
|
> Ein Beobachter sieht einen Gegenstand auf dem Grund eines
> Beckens. Vom Gegenstand ausgehende Lichtstrahlen werden
> beim Austritt an der Grenzfläche Wasser- Luft gebrochen
> (Brechnungsgesetz)
> Gegeben seien [mm]t,h,d[/mm] und das Brechungsgesetz.
> [mm]\alpha...[/mm] Einfallswinkel im Wasser
> [mm]\beta ...[/mm] Brechungswinkel an der Luft
> Lichtgeschwindigkeit im Luft: [mm]c_L = 2,99703062\cdot 10^8 m/s[/mm]
> Lichtgeschwindigkeit im Wasser: [mm]c_w = 2,24888\cdot 10^8 m/s[/mm]
> Man ermittle [mm]x, \alpha, \beta[/mm]
> Aus dem Brechungsgesetz
> [mm]\frac{sin(\alpha)}{sin(\beta)}= \frac{c_W}{c_L}[/mm] folgt
> [mm]sin(\beta) = \frac{sin(\alpha)\cdot c_L }{c_W}[/mm] und
> (1) [mm]\beta = arcsin \left( sin(\alpha) \cdot \frac{c_L}{c_W} \right ).[/mm]
> Weiters gilt :
>
> (2) [mm]tan(\alpha) = \frac{d-x}{t}[/mm] bzw. [mm]x = d - t\cdot tan(\alpha)[/mm]
> (3) [mm]tan(\beta) = \frac{x}{h-t} [/mm] bzw. [mm]x = (h-t) \cdot tan(\beta)[/mm]
>
> [mm](h-t)\cdot tan \left( arcsin(\alpha) \cdot \frac{c_L}{c_W }\right) = d - tan(\alpha)[/mm]
>
> Lösungsvesuch mit Computeralgebrasystem:
> [mm]\alpha[/mm] markieren und Symbolik/Variable/Auflösen ergibt
> "Kein symbolisches Ergebnis gefunden".
>
> [mm](h-t) \cdot \left(arcsin(\alpha) \frac{c_L}{c_W }\right) = d - tan(\alpha)[/mm]
> vereinfachen [mm]\Rightarrow[/mm]
> [-[(-h) + 1 ]] [mm]\cdot \frac{ sin\left(arcsin(\alpha) \frac{c_L } {c_W} \right)}{cos \left( arcsin(\alpha)\cdot
\frac{c_L}{c_W}\right)}[/mm]
> = [mm]\frac{d\cdot cos(\alpha) - t\cdot sin(\alpha) }{cos(\alpha) }[/mm]
>
> [mm]\alpha[/mm] markieren und Symbolik/Auswerten/Symbolisch bringt
> keine Änderung.
> Auch nicht mit Symbolik/Vereinfachen, Erweitern,
> Faktorisieren, usw.
>
> Es bleibt die Frage offen: Wie kann die Gleichung nach
> [mm]\alpha[/mm] umgestellt werden? Handelt es sich um ein lösbares
> Problem?
>
> P.S. Es ist ein rein mathematisches Problem; das
> physikalische Problem dahinter ist gelöst^^
Hallo clemenum,
es wäre natürlich gut gewesen, wenn du eine Zeichnung zur
Erklärung der Bezeichnungen beigefügt hättest. Ich habe mir
das Ganze nun rekonstruiert.
Soweit ich sehe, sind deine Startgleichungen (1),(2),(3) in Ordnung.
Doch dann kommt ein Fehler, denn du hast falsch eingesetzt.
Anstatt [mm](h-t)\cdot tan \left( arcsin(\alpha) \cdot \frac{c_L}{c_W }\right) = d - tan(\alpha)[/mm]
sollte es heißen:
[mm](h-t)\cdot tan \left(arcsin \left( sin(\alpha) \cdot \frac{c_L}{c_W} \right )\right) = d - tan(\alpha)[/mm]
Dass damit dann der CAS - Lösungsversuch in die Hose geht,
ist nicht unbedingt verwunderlich.
Für einen Test, ob ein CAS die (korrigierte) Gleichung
bewältigt, habe ich die Abkürzungen
k:=h-t und [mm] f:=c_L/c_W
[/mm]
eingeführt. Mit der entstandenen Gleichung
k*Tan[ArcSin[f*Sin[a]]] == d - Tan[a]
hat selbst Mathematica für eine allgemeine Lösung
offenbar Mühe, selbst wenn ich noch die Voraussetzungen
k>0, f>0, d>0, a>0 und a<Pi/2 dazu gebe.
Hingegen wird bei numerischer Vorgabe von Werten für
die Konstanten k,f,d die Gleichung anstandslos gelöst.
Ich denke aber, dass durch eine gewisse Aufbereitung der
Gleichungen auch eine solche trigonometrische Lösung
zum Ziel führen sollte.
Der übliche Weg der Lösung dieses Brechungsproblems
führt über eine Extremwertaufgabe und ist z.B. als
Abituraufgabe (nicht in allgemeiner Form, sondern mit
geeigneten Annahmen) sogar recht beliebt ...
LG Al-Chw.
|
|
|
|
|
Hallo Al-Chwarizmi!
Erstmal, vielen Dank für deine Mühen!
Es bleibt jedoch die Frage offen, was du unter "gewisse Aufbereitungen der Gleichungen" meinst. Glaubst du, gibt es Additionstheoreme der Trigonometrie, welche eine analytische allgemeine Lösung erlauben?
Es war nämlich vorgesehen, dass wir dies allgemein lösen sollen^^
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Di 20.12.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
> Ein Beobachter sieht einen Gegenstand auf dem Grund eines
> Beckens. Vom Gegenstand ausgehende Lichtstrahlen werden
> beim Austritt an der Grenzfläche Wasser- Luft gebrochen
> (Brechnungsgesetz)
> Gegeben seien [mm]t,h,d[/mm] und das Brechungsgesetz.
> [mm]\alpha...[/mm] Einfallswinkel im Wasser
> [mm]\beta ...[/mm] Brechungswinkel an der Luft
> Lichtgeschwindigkeit im Luft: [mm]c_L = 3\cdot 10^8 m/s[/mm]
> Lichtgeschwindigkeit im Wasser: [mm]c_w = 2,25\cdot 10^8 m/s[/mm]
> Man ermittle [mm]x, \alpha, \beta[/mm]
> Aus dem Brechungsgesetz [mm]\frac{sin(\alpha)}{sin(\beta)}= \frac{c_W}{c_L}[/mm]
> folgt [mm]sin(\beta) = \frac{sin(\alpha)\cdot c_L }{c_W}[/mm] und
> (1) [mm]\beta = arcsin \left( sin(\alpha) \cdot \frac{c_L}{c_W} \right ).[/mm]
> Weiters gilt :
>
> (2) [mm]tan(\alpha) = \frac{d-x}{t}[/mm] bzw. [mm]x = d - t\cdot tan(\alpha)[/mm]
> (3) [mm]tan(\beta) = \frac{x}{h-t} [/mm] bzw. [mm]x = (h-t) \cdot tan(\beta)[/mm]
Figur dazu:
[Dateianhang nicht öffentlich]
LG Al-Chwarizmi
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|