matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikOptionsbewertung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Finanzmathematik" - Optionsbewertung
Optionsbewertung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optionsbewertung: Was ist "moment matching"?
Status: (Frage) beantwortet Status 
Datum: 21:21 Mo 21.03.2011
Autor: timyyyyyy

Hallo,
ich beschäftige mich gerade mit dem Thema Optionsbewertung.

Und daher wollte ich fragen: Was ist "moment matching"?
Kontext: diskrete stochastische Prozesse. (Modellierung der Volatilität der Aktie)

Vielen Dank schonmal im voraus!

lg
tobias

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Optionsbewertung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 Di 22.03.2011
Autor: Blech

Hi,

etwas mehr Kontext wäre nett, aber prinzipiell heißt moment matching, daß Du die Parameter eines Modells so wählst, daß die ersten k Momente des gefitteten Modells mit den empirischen Momenten der Beobachtungen übereinstimmen.

Für Prozesse guckst Du z.B. []hier.

ciao
Stefan

Bezug
                
Bezug
Optionsbewertung: matching moments/first moments
Status: (Frage) beantwortet Status 
Datum: 11:10 Di 22.03.2011
Autor: timyyyyyy

also erstmal schonmal DANKE. das hat mir schonmal geholfen.

hinsichtlich des genaueren kontexts. es geht gerade um die diskretisierung des Heston Modells (Optionsbewertung) unter Anwendung des Anderesen Scheme, so dass die Vola im stochastischen Prozess nicht negativ wird (also die Berechnung nicht abgebrochen wird aufgrund der Wurzel aus einer neg. Zahl).

Leider bin ist es teilweise für mich recht schwer mich da hinein zu arbeiten / es zu verstehen mit meinem lediglich gymnasiale mathe.

FRAGE:
was genau versteht man denn unter den "ersten momenten"?

also nach deiner antwort glaube ich es so verstanden zu haben.
einfaches Bsp: Heston-Modell:
v(t+1)= k[a-v(t)]*dt + WURZEL[v(t)]*dt*Z
und matching moments wäre dann, dass ich die Werte für die konstanten K und a schätzen müsste aus den empirischen daten heraus?!?
ist das so richtig. (Z wäre eine normalverteilte Zufallsvariable)

danke auf jeden fall nochmals und schonmal =)

Bezug
                        
Bezug
Optionsbewertung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Di 22.03.2011
Autor: Blech

Hi,

leider sagt mir das "Anderesen Scheme" überhaupt nix, also arbeite ich mit dem Bsp aus dem PDF, Seite 4.


Du hast ein (als korrekt angenommenes) Modell für die einzelnen assets (1), daraus ergibt sich für einen entsprechenden basket

[mm] $A_t:=\sum_i a_i S^i_t$ [/mm]

Dem korrekten Modell

[mm] $d\, A_t [/mm] =$ <hier Ito-Formel>

ist analytisch kaum beizukommen, also bemüht man das viel einfachere

[mm] $d\, \overline{A}_t [/mm] = [mm] (r-\overline{q})\overline{A}_t\ [/mm] dt + [mm] \overline{\sigma}\overline{A}_t\ dW_t$ [/mm]

Soll heißen, wir nehmen an, daß sich der basket annähernd verhält wie ein einzelnes asset mit Parametern [mm] $\overline{q}$ [/mm] und [mm] $\overline{\sigma}$. [/mm]


Um Werte für die zu erhalten, nehmen wir an, daß zu einem Zeitpunkt T

[mm] $E(A_T)=E(\overline{A}_T)$ [/mm] und [mm] $E(A^2_T)=E(\overline{A}_T^2)$. [/mm]

(2 Parameter, 2 Momente. Wichtig ist, daß Du [mm] $E(\overline{A}_t)$ [/mm] nach [mm] $\overline{q}$ [/mm] und [mm] $E(\overline{A}_t^2)$ [/mm] nach [mm] $\overline{\sigma}$ [/mm] auflösen kannst.)

Auf Seite 4 unten sind die Formeln für [mm] $\overline{A}$; [/mm] Seite 5 Mitte die für A. Gleichgesetzt und aufgelöst ergibt das die Gleichungen (3). Damit hast Du Formeln für die beiden Parameter des vereinfachten Modells, die nur von bekannten oder schätzbaren Größen der einzelnen assets abhängen. Und die Formeln garantieren, daß 1. und 2. Moment des vereinfachten Modells mit denen des korrekten Modells zum Zeitpunkt T übereinstimmen.

Wieviele Momente Du matchen kannst, hängt von der Zahl der Freiheitsgrade, d.h. Parameter, des vereinfachten Modells ab. Was übrigens noch nix über die Güte aussagt. Du kannst ein völlig unpassendes Modell wählen, das trotzdem die gleichen Momente hat.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]