Optional sigma field < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 20:53 Fr 16.07.2010 | Autor: | dazivo |
Aufgabe | Sei [mm] $(\Omega, \mathcal{F}, [/mm] P, [mm] \mathbb{F})$ [/mm] ein filtrierter W'Raum mit $P$-vollständiger Filtration [mm] $\mathbb{F} [/mm] = [mm] (\mathcal{F}_t)_{t \geq 0}$. [/mm] Desweiteren sei $X$ ein rechtsstetiger und adaptierter Prozess. Definiere die Menge für [mm] $\epsilon [/mm] > 0$:
[mm] $\mathcal{S}_\epsilon [/mm] := [mm] \{ T \text{ Stoppzeit}: \exists Y \text{ optional, so dass } [[0, T)) \cap \{ |X-Y| \geq \epsilon\} P-\text{evanescent ist}\}$. [/mm] Die Behauptug lautet nun: Sind $S,T [mm] \in \mathcal{S}_\epsilon$ [/mm] dann ist [mm] $\max\{S,T\} \in \mathcal{S}_\epsilon$. [/mm] |
Hallo zusammen!!
Die obige Behauptung tauchte im Beweis auf, welcher zeigte, dass die optionale sigma algebra gleich der der sigma algebra generiert von allen rechtsstetigen und adaptierten Prozesse ist. Es wird nur erwähnt, dass dies so sei.
Ich habe mit dieser Behauptung ein bisschen Mühe. Was ich versucht habe:
Seien $S,T [mm] \in \mathcal{S}_\epsilon$ [/mm] mit entsprechenden optionalen Prozesse [mm] $Y^{(S)}, Y^{(T)}$. [/mm] Das heisst nach obiger Definition von [mm] $\mathcal{S}_\epsilon$ [/mm] gilt:
$[[0, T)) [mm] \cap \{ |X-Y^{(S)}| \geq \epsilon\}$ [/mm] und $[[0, T)) [mm] \cap \{ |X-Y^{(T)}| \geq \epsilon\}$ [/mm] sind $P$-evanescent.
Man muss also einen optionalen Prozess [mm] $Y^{*}$ [/mm] finden mit
$[[0, [mm] T\vee [/mm] S)) [mm] \cap \{ |X-Y^{*}| \geq \epsilon\}$ [/mm] ist $P$-evanescent.
Man kann diese Menge aufgrund der Definition von [mm] $\vee [/mm] := [mm] \max$ [/mm] schreiben als $[[0, T)) [mm] \cap \{ |X-Y^{*}| \geq \epsilon\} \cup [/mm] [[0, S)) [mm] \cap \{ |X-Y^{*}| \geq \epsilon\}$.
[/mm]
Jetzt wäre es schön wenn ich [mm] $Y^{*}$ [/mm] als [mm] $Y^{(S)}$ [/mm] auf $[[0,S))$ und als [mm] $Y^{(T)}$ [/mm] auf $[[0,T))$ definieren könnte, aber das führt i.A zu nichts, denn die beiden Stoppzeiten müssen ja nicht unbedingt [mm] $\geq$ [/mm] oder [mm] $\leq$ [/mm] sein. Kann mir da irgend jemand weiterhelfen?? Ich wäre sehr sehr dankbar
viele Grüsse dazivo
Übrigens: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:20 So 18.07.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|