matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseOptional sigma field
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "stochastische Prozesse" - Optional sigma field
Optional sigma field < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optional sigma field: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:53 Fr 16.07.2010
Autor: dazivo

Aufgabe
Sei [mm] $(\Omega, \mathcal{F}, [/mm] P, [mm] \mathbb{F})$ [/mm] ein filtrierter W'Raum mit $P$-vollständiger Filtration [mm] $\mathbb{F} [/mm] = [mm] (\mathcal{F}_t)_{t \geq 0}$. [/mm] Desweiteren sei $X$ ein rechtsstetiger und adaptierter Prozess. Definiere die Menge für [mm] $\epsilon [/mm] > 0$:
[mm] $\mathcal{S}_\epsilon [/mm] := [mm] \{ T \text{ Stoppzeit}: \exists Y \text{ optional, so dass } [[0, T)) \cap \{ |X-Y| \geq \epsilon\} P-\text{evanescent ist}\}$. [/mm] Die Behauptug lautet nun: Sind $S,T [mm] \in \mathcal{S}_\epsilon$ [/mm] dann ist [mm] $\max\{S,T\} \in \mathcal{S}_\epsilon$. [/mm]

Hallo zusammen!!

Die obige Behauptung tauchte im Beweis auf, welcher zeigte, dass die optionale sigma algebra gleich der der sigma algebra generiert von allen rechtsstetigen und adaptierten Prozesse ist. Es wird nur erwähnt, dass dies so sei.
Ich habe mit dieser Behauptung ein bisschen Mühe. Was ich versucht habe:
Seien $S,T [mm] \in \mathcal{S}_\epsilon$ [/mm] mit entsprechenden optionalen Prozesse [mm] $Y^{(S)}, Y^{(T)}$. [/mm] Das heisst nach obiger Definition von [mm] $\mathcal{S}_\epsilon$ [/mm] gilt:
$[[0, T)) [mm] \cap \{ |X-Y^{(S)}| \geq \epsilon\}$ [/mm] und $[[0, T)) [mm] \cap \{ |X-Y^{(T)}| \geq \epsilon\}$ [/mm] sind $P$-evanescent.
Man muss also einen optionalen Prozess [mm] $Y^{*}$ [/mm] finden mit
$[[0, [mm] T\vee [/mm] S)) [mm] \cap \{ |X-Y^{*}| \geq \epsilon\}$ [/mm] ist $P$-evanescent.
Man kann diese Menge aufgrund der Definition von [mm] $\vee [/mm] := [mm] \max$ [/mm] schreiben als $[[0, T)) [mm] \cap \{ |X-Y^{*}| \geq \epsilon\} \cup [/mm] [[0, S)) [mm] \cap \{ |X-Y^{*}| \geq \epsilon\}$. [/mm]
Jetzt wäre es schön wenn ich [mm] $Y^{*}$ [/mm] als [mm] $Y^{(S)}$ [/mm] auf $[[0,S))$ und als [mm] $Y^{(T)}$ [/mm] auf $[[0,T))$ definieren könnte, aber das führt i.A zu nichts, denn die beiden Stoppzeiten müssen ja nicht unbedingt [mm] $\geq$ [/mm] oder [mm] $\leq$ [/mm] sein. Kann mir da irgend jemand weiterhelfen?? Ich wäre sehr sehr dankbar

viele Grüsse dazivo

Übrigens: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Optional sigma field: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 So 18.07.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]