matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeOptimierungsrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Optimierungsrechnung
Optimierungsrechnung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierungsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Fr 19.11.2010
Autor: eddex

Aufgabe 1
Einer quadratischen Pyramide soll ein Quader so einbeschrieben werden, dasssein Volumen ein Maximum wird.

Aufgabe 2
Ein Bewässerungskanal mit dreieckigem Querschnitt soll stündlich 28800 m³ Wasser bei einer Strömungsgeschwindigkeit von 3,6 km/h befördern. Wie müssen die Maße gewält sein, damit die benetzte Fläche, d.h. der Betonverbrauch möglichst klein wird?

Zum lösen dieser aufgaben sollen wir mit Haupt und nebenbedingen arbeiten, leider finde ich nur absolut gar keinen ansatz... kann mir jemand ein wenig unter die arme greifen?

Mfg eddex

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Optimierungsrechnung: zu Aufgabe (1)
Status: (Antwort) fertig Status 
Datum: 15:54 Fr 19.11.2010
Autor: Roadrunner

Hallo eddex!


Wie lautet das Volumen eines Quaders? Da die Pyramide quadratisch ist, wird dies aus geometrischen Gründen auch für den gesuchten Quader gelten.

[mm] $$V_{\text{Quader}} [/mm] \ = \ G*h \ = \ [mm] a^2*h$$ [/mm]
Dies ist die Hauptbedingung.

Für die Nebenbedingung solltest Du Dir eine Skizze machen, am besten mal senkrecht durch die Mitte geschnitten.

Dann solltest Du für die Nebenbedingung an die Strahlensätze denken.
Benenne dafür die Grundseite der Pyramide mit $A_$ und die Höhe der Pyramide mit $H_$ .


Gruß vom
Roadrunner

Bezug
                
Bezug
Optimierungsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Fr 19.11.2010
Autor: eddex

hey ist bestimmt ein guter ansatz, den du mir da gegeben hast, aber ich komme mit den verhältnissen irgendwie nicht weiter, habe das nun schon dreimal skizziert, aber mir ist noch nicht so ganz klar, wie der strahlensatz hier weiterhelfen soll ...

Bezug
                        
Bezug
Optimierungsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 Sa 20.11.2010
Autor: Pappus

Guten Tag!

Deine Skizze sollte in etwa so aussehen:

[Dateianhang nicht öffentlich]

Mit Roadrunners Bezeichnungen ergäbe sich folgende Proportion:

[mm] $\dfrac [/mm] AH = [mm] \dfrac{a}{H-h}$ [/mm]

In diesem Fall ist es wohl am besten a aus der Nebenbedingung auszurechnen und in die Hauptbedingung einzusetzen.

Viel Erfolg!

Pappus

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
        
Bezug
Optimierungsrechnung: zu Aufgabe (2)
Status: (Antwort) fertig Status 
Datum: 16:00 Fr 19.11.2010
Autor: Roadrunner

Hallo!


Auch hier hilft selbstverständlich eine Skizze. Ich nehme jetzt mal an, dass der Kanel oben offen ist. Das Dreieck des Kanels steht also auf der Spitze.

Die Hauptbedingung wird hier gegeben durch die Summe der beiden Schenkel des Dreieckes.

Die Nebenbedingung ergibt sich aus der durchflossenen Wassermenge je Stunde mit:
$$Q \ = \ v*A$$

Dabei ist $Q \ = \ 28800 \ [mm] \tfrac{\text{m}^3}{\text{h}}$ [/mm] sowie $v \ = \ 3{,}6 \ [mm] \tfrac{\text{km}}{\text{m}}$ [/mm] .

$A_$ gibt den Flächeninhalt des gesuchten Dreieckes an.


Gruß vom
Roadrunner

Bezug
                
Bezug
Optimierungsrechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 01:11 Sa 20.11.2010
Autor: eddex

O.K. also muss der Flächeninhalt A des dreiecks [mm] 8m^2 [/mm] sein richtig? nun habe ich noch die bedingung dass die schenkel gleich lang sein sollen und möglichst klein..... jedoch kriege ich das einfach nicht mit formeln beschriebe, kann mir da jemand weiterhelfen bitte?

Bezug
                        
Bezug
Optimierungsrechnung: etwas mehr Mitarbeit bitte
Status: (Antwort) fertig Status 
Datum: 13:44 Sa 20.11.2010
Autor: Roadrunner

Hallo eddex!



> O.K. also muss der Flächeninhalt A des dreiecks [mm]8m^2[/mm] sein
> richtig?

[ok]


Wie lautet denn der Flächeninhalt eines gleichschenkligen Dreieckes?


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]