matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesOptimierungsproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Optimierungsproblem
Optimierungsproblem < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierungsproblem: Probleme mit der Definition
Status: (Frage) beantwortet Status 
Datum: 18:54 Mo 23.05.2011
Autor: bandchef

Aufgabe
Definition:

[mm] $\Sigma_{\text{in}}$ [/mm] ist ein Eingabealphabet
[mm] $\Sigma_{\text{out}}$ [/mm] ist ein Ausgabealphabet
$L [mm] \subseteq \Sigma_{\text{in}}^\star$ [/mm] ist die Sprach der zulässigen Eingaben. $x [mm] \in [/mm] L$ heißt Instanz von U.
$M:L [mm] \to P(\Sigma_{\text{out}})^\star$ [/mm] ist eine Funktion - für jedes $x [mm] \in [/mm] L$ ist $M(x)$ die Menge der zulässigen Lösungen für x.
[mm] $\text{cost}: \bigcup_{x\in L} [/mm] (M(x) [mm] \times \{x\}) \to {\mathbb R}^{+}:$ [/mm] ist eine Funktion, genannt Kostenfunktion
[mm] $\text{goal} \in \{\text{Minimun, Maximun}\}$ [/mm] ist das Optimierungsziel.

Eine zulässige Lösung $a [mm] \in [/mm] M(x)$ heißt optimal für die Instanz x des Optimierungsproblems $U$, falls:

[mm] $\text{Opt}_U(x) [/mm] = [mm] \text{cost}(a,x) [/mm] = [mm] \text{goal} \{\text{cost}(\beta,x) | \beta \in M(x)\} [/mm]

Hi Leute!

Kann mir das oben mal jemand erklären? :-) Irgendwie verstehe ich das grad nicht so. Was die Ein- und Ausgabealphabete bzw. die Sprache der zulässigen Eingaben sind, verstehe ich noch. Auch mit der Menge zulässigen Lösungen für x, kann ich noch was anfange, aber dann weiß ich echt nicht mehr was das soll. Insbesondere die Kostenfunktion und das Optimierungsziel!

Könnt ihr mir helfen?

        
Bezug
Optimierungsproblem: Querverweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:06 Mo 23.05.2011
Autor: Loddar

.

siehe mal hier ...


Bezug
                
Bezug
Optimierungsproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Mo 23.05.2011
Autor: bandchef

Entschuldigung!

Wenn ich demnächst wieder zu "Nicht-Schulstoff" eine Frage stelle, dann werde ich das Uni-Subofrum auswählen! Kannst du nachträglich verschieben?

Bezug
        
Bezug
Optimierungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Mi 25.05.2011
Autor: meili

Hallo,

> Definition:
>  
> [mm]\Sigma_{\text{in}}[/mm] ist ein Eingabealphabet
>  [mm]\Sigma_{\text{out}}[/mm] ist ein Ausgabealphabet
>  [mm]L \subseteq \Sigma_{\text{in}}^\star[/mm] ist die Sprach der
> zulässigen Eingaben. [mm]x \in L[/mm] heißt Instanz von U.
>  [mm]M:L \to P(\Sigma_{\text{out}})^\star[/mm] ist eine Funktion -
> für jedes [mm]x \in L[/mm] ist [mm]M(x)[/mm] die Menge der zulässigen
> Lösungen für x.
>  [mm]\text{cost}: \bigcup_{x\in L} (M(x) \times \{x\}) \to {\mathbb R}^{+}:[/mm]
> ist eine Funktion, genannt Kostenfunktion
>  [mm]\text{goal} \in \{\text{Minimun, Maximun}\}[/mm] ist das
> Optimierungsziel.
>  
> Eine zulässige Lösung [mm]a \in M(x)[/mm] heißt optimal für die
> Instanz x des Optimierungsproblems [mm]U[/mm], falls:
>  
> [mm]$\text{Opt}_U(x)[/mm] = [mm]\text{cost}(a,x)[/mm] = [mm]\text{goal} \{\text{cost}(\beta,x) | \beta \in M(x)\}[/mm]
>  
> Hi Leute!
>  
> Kann mir das oben mal jemand erklären? :-) Irgendwie
> verstehe ich das grad nicht so. Was die Ein- und
> Ausgabealphabete bzw. die Sprache der zulässigen Eingaben
> sind, verstehe ich noch. Auch mit der Menge zulässigen
> Lösungen für x, kann ich noch was anfange, aber dann
> weiß ich echt nicht mehr was das soll. Insbesondere die
> Kostenfunktion und das Optimierungsziel!
>  
> Könnt ihr mir helfen?

Es ist einfach die etwas formal aufgemotze Aussage,
dass es eine Kostenfunktion gibt. (Über ihre Eigenschaften
oder ihren Verlauf ist nichts ausgesagt, bis auf,
sie nimmt Werte aus [mm] $\IR^+$ [/mm] an.)
Diese Kostenfunktion soll dann minimiert oder maximiert werden.
(Das globale Minimum oder Maximum gesucht werden?)

Eine zulässige Lösung [mm]a \in M(x)[/mm] heißt optimal für die  Instanz x
des Optimierungsproblems [mm]U[/mm], falls der Wert der Kostenfunktion  
für dies a  größer (oder kleiner) als jeder Werte der Kostenfunktion für alle
anderen zulässigen Lösungen [mm]\beta \in M(x)[/mm]  für die  Instanz x ist.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]