matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenOptimierung in mehreren Veränd
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Determinanten" - Optimierung in mehreren Veränd
Optimierung in mehreren Veränd < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Optimierung in mehreren Veränd: Definitheit
Status: (Frage) beantwortet Status 
Datum: 19:28 Do 23.07.2009
Autor: Inspiration

Aufgabe
f''(x,y) = (12x²-2a        0       )
          (0               12y²-2b)    


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo!
Habe ein Problem bei der Bestimmung der Definitheit bei folgender Aufgabe.
Wäre echt dankbar wenn mir da jemand weiterhelfen könnte!!!
LG

f''(x,y) = 12x² - 2a           0                
                 0                12y²-2b

Für den stationären Punkt P1(0,0) ergibt sich folgende Matrix
-2a 0
0 -2b

Die erste Hauptabschnittsdeterminante (HAD) ist ja dann
-2a<0 --> negativ

Die 2te HAD wäre dann -2a 0
                       0 -2b
normalerweise würde man ja rechen:
(-2a*-2b) - (0*0)
aber ist diese nun negativ oder positiv??
Wie bestimmt man hier die definitheit?

        
Bezug
Optimierung in mehreren Veränd: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Do 23.07.2009
Autor: schachuzipus

Hallo Inspiration und herzlich [willkommenmr],

> $f''(x,y) = [mm] \pmat{12x^2-2a&0\\0&12y^2-2b} [/mm] \ \ \ \ [mm] \leftarrow$ klick! > > Ich habe diese Frage in keinem Forum auf anderen > Internetseiten gestellt > > Hallo! > Habe ein Problem bei der Bestimmung der Definitheit bei > folgender Aufgabe. > Wäre echt dankbar wenn mir da jemand weiterhelfen > könnte!!! > LG > > $f''(x,y) = \pmat{12x^2-2a&0\\0&12y^2-2b}$ > > Für den stationären Punkt P1(0,0) ergibt sich folgende > Matrix > $\pmat{-2a&0\\0&-2b}$ > > Die erste Hauptabschnittsdeterminante (HAD) ist ja dann > -2a<0 --> negativ Falls a>0 ! > > Die 2te HAD wäre dann $det\pmat{-2a&0\\0&-2b}$ > normalerweise würde man ja rechen: > (-2a*-2b) - (0*0) $=4ab$ > aber ist diese nun negativ oder positiv?? Na, das hängt wohl von a und b ab. Ohne Kenntnis über a,b kann man keine eind. Aussage treffen ... > Wie bestimmt man hier die definitheit? Du hast schon den richtigen Ansatz, eine andere Möglichkeit wäre die Bestimmung der Eigenwerte, die kannst du ja hier direkt ablesen ... Aber ohne genaue Aufgabenstellung kann man kaum auf die Definitheit schließen, sie ist ja abhängig von a und b siehe [/mm]  []Definithiet/Hauptminorenkriterium


LG

schachuzipus


Bezug
                
Bezug
Optimierung in mehreren Veränd: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 Do 23.07.2009
Autor: Inspiration

vielen dank für die schnelle antwort!!
Habe in der Aufgabenstellung überlesen, dass [mm] a,b\in\IR+ [/mm]
Dann ist die 2te HAD > 0 also positiv
Und insgesammt ist die Matrix, dann negativ definit...

Bezug
                        
Bezug
Optimierung in mehreren Veränd: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 Do 23.07.2009
Autor: schachuzipus

Hallo nochmal,

> vielen dank für die schnelle antwort!!
>  Habe in der Aufgabenstellung überlesen, dass [mm]a,b\in\IR+[/mm]
>  Dann ist die 2te HAD > 0 also positiv

> Und insgesammt ist die Matrix, dann negativ definit... [ok]

Ganz genau, alternative (auch sehr kurze) Argumentation:

Die beiden Eigenwerte sind ja ersichtlich $-2a$ und $-2b$

Beide sind $<0$, da nach Vor. $a,b>0$, also ist die Matrix neg. definit

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]