matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesOffene/Abgeschlossene Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Offene/Abgeschlossene Mengen
Offene/Abgeschlossene Mengen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Offene/Abgeschlossene Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Di 27.11.2007
Autor: Pawelos

HI

Also ich muss bei einer Aufgabe entscheiden welche Teilmengen offen / abgeschlossen in A bzw. in R² sind.
A:={(x,y) [mm] \in [/mm] R² : 1<=x<3}

[mm] \emptyset [/mm]    Beides in R² und auch in A
A    auf jeden Fall beides in A und ich denke abgeschlossen in R²!?
{(1,3)}     Also Punkte sind offen oder? demnach also offen in R²
das sind nur die ersten paar.

Meine Frage ist eigentlich wie kann man das prüfen?

U [mm] \subset [/mm] A ist offen wenn es eine offene teilmenge S in in R² existiert so dass A [mm] \cap [/mm] S = U. Richtig?

U ist abgeschlossen falls [mm] A\U [/mm] offen. Richtig

Gilt das auch umgekehrt? Eher nicht oder?

gibts noch mehr solche Sachen zum überprüfen???

Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Offene/Abgeschlossene Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Mi 28.11.2007
Autor: komduck

A ist nicht abgeschlossen in [mm] R^2 [/mm]
Punkte sind abgeschlossen.
>U $ [mm] \subset [/mm] $ A ist offen wenn es eine offene teilmenge S in in R² existiert so dass A $ [mm] \cap [/mm] $ S = U. Richtig?
Du mußt ganz genau sagen wann du offen in A und wann offen in [mm] R^2 [/mm] meinst.
>U ist abgeschlossen falls $ [mm] A\U [/mm] $ offen. Richtig?
Nein das ist aber ein Anzeigeproblem
du mußt setminus verwenden:
U ist abgeschlossen in A falls $ A [mm] \setminus [/mm] U $ offen in A.
U ist offen in A falls $ A [mm] \setminus [/mm] U $ abgeschlossen in A.

komduck



Bezug
                
Bezug
Offene/Abgeschlossene Mengen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:19 Mi 28.11.2007
Autor: Pawelos


>  Punkte sind abgeschlossen.

Ach stimmt aber Punkte im sinne von n [mm] \in \IN [/mm] weil die Zahl(punkt) dann ein offener intervall ist!? Das stimmt doch oder? Hab ich dann damit verwechselt.

>  >U [mm]\subset[/mm] A ist offen wenn es eine offene teilmenge S in
> in R² existiert so dass A [mm]\cap[/mm] S = U. Richtig?
> Du mußt ganz genau sagen wann du offen in A und wann offen
> in [mm]R^2[/mm] meinst.

In A meinte ich hier


>  U ist abgeschlossen in A falls [mm]A \setminus U[/mm] offen in A.
>  U ist offen in A falls [mm]A \setminus U[/mm] abgeschlossen in A.

ja genau das wollte ich auch schreiben aber irgendwie hab ich da nur blödsinn geschrieben!

Noch was {1} [mm] \times \IR [/mm] ist das offen In [mm] \IR²? [/mm] in A? wenn ich vorhin recht hatte mit dem Intervall ist {1} offen in [mm] \IR [/mm] und [mm] \IR [/mm] ist ja auch offen. So müsste ja das kreutzprodukt auch offen sein in [mm] \IR²!? [/mm] Und dann auch in A!

Bezug
                        
Bezug
Offene/Abgeschlossene Mengen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:03 Fr 30.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]