matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenONB, Projektion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - ONB, Projektion
ONB, Projektion < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ONB, Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:50 Mo 11.06.2007
Autor: pleaselook

Aufgabe
Gegeben sei der Vektorraum [mm] \mathbb(R)^3 [/mm] mit dem Standardskalarprodukt und die Vektoren [mm] v_1=(1,1,2)^T, v_2=(4,-2,2) [/mm] und [mm] v_3=(-7,11,4). [/mm]
a) Beweise oder widerlegen Sie: [mm] U:=span(v_1,v_2,v_3)=\mathbb{R}^3. [/mm]
b) Prüfen Sie, ob u=(-1,5,4) orthogonale Projektion von x=(0,6,3) in U ist.

Moin moin.
Also für a bräuchte ich nur mal ne kurze Rückmeldung, ob das so legitim ist und für b jemanden der.
Ich würde ne Matrix A [mm] =\pmat{1&4&-7\\1&-2&11\\2&2&4}\sim \pmat{1&0&0\\0&1&0\\0&0&1} [/mm]
Ok. das ist ja die Standartbasis (ist das auch schon meine ONB?)-> [mm] U=\mathbb{R}^3. [/mm]

zu b) hmm. kann man das auch ohne ONB bestimmen? Was muß den x verbal formuliert in Beziehung zu u darstellen?



        
Bezug
ONB, Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:56 Mo 11.06.2007
Autor: angela.h.b.


> Gegeben sei der Vektorraum [mm]\mathbb(R)^3[/mm] mit dem
> Standardskalarprodukt und die Vektoren [mm]v_1=(1,1,2)^T, v_2=(4,-2,2)[/mm]
> und [mm]v_3=(-7,11,4).[/mm]
>  a) Beweise oder widerlegen Sie:
> [mm]U:=span(v_1,v_2,v_3)=\mathbb{R}^3.[/mm]
>  b) Prüfen Sie, ob u=(-1,5,4) orthogonale Projektion von
> x=(0,6,3) in U ist.
>  Moin moin.
>  Also für a bräuchte ich nur mal ne kurze Rückmeldung, ob
> das so legitim ist und für b jemanden der.
>  Ich würde ne Matrix A [mm]=\pmat{1&4&-7\\1&-2&11\\2&2&4}\sim \pmat{1&0&0\\0&1&0\\0&0&1}[/mm]
>  

Hallo,

und hm. Dein Satz bricht so plötzlich ab.

Falls Du meinst, daß man A durch Zeilenumformungen auf [mm] \pmat{1&0&0\\0&1&0\\0&0&1} [/mm] bringen kann, stimmt das nicht.

Daher ist der Spann [mm] \not=\IR. [/mm]


Für b) benötigst Du das orthogonale Komplement [mm] U^{\perp} [/mm] von [mm] U:=span(v_1,v_2,v_3). [/mm]

Dazu mußt Du die Basis von U so zu einer Basis von [mm] \IR^3 [/mm] ergänzen, daß der neue (bzw. die neuen) Basisvektor(en) senkrecht auf allen Vektoren aus U stehen.

Der nächste Schritt ist zu prüfen, ob eine Zerlegung von x in [mm] x=u^{\perp}+u [/mm] mit [mm] u^{\perp}\in U^{\perp} [/mm] möglich ist.

Gruß v. Angela



Bezug
                
Bezug
ONB, Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Mo 11.06.2007
Autor: pleaselook

Moin Moin angela.

zu a) Sorry. Blödes Tool das ich verwendet habe.
Also per Hand ergibts:
[mm] A=\pmat{1&4&-7\\1&-2&11\\2&2&}\sim \pmat{1&4&-7\\0&6&-18\\0&0&0} [/mm]
[mm] \Rightarrow [/mm] rg(A)=2 [mm] \Rightarrow [/mm] dim U = 2 [mm] \Rightarrow U\neq \IR^3 [/mm]
D.h. doch daß [mm] v_3 [/mm] aus [mm] v_1 [/mm] und [mm] v_2 [/mm] dartellbar ist.
nun zu b) also muß ich erstmal einen Vektor finden der mit [mm] (1,0,0)^T [/mm] und [mm] (4,6,0)^T [/mm] ne Basis des [mm] \IR^3 [/mm] bildet? (d.h. doch automatisch/insbesondere, dass er zu allen senktecht ist?)
gut da wäre mein Vorschlag dann: [mm] v_4=(0,0,1)^T [/mm]
Damit wäre dann [mm] U*=span(\vektor{1\\0\\0},\vektor{4\\6\\0},\vektor{0\\0\\1})=\IR^3. [/mm]
Passt das soweit?

Vielen Dank übrigens für deine Mühen. Hilft mir echt weiter.

Bezug
                        
Bezug
ONB, Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Mo 11.06.2007
Autor: angela.h.b.


> Moin Moin angela.
>  
> zu a) Sorry. Blödes Tool das ich verwendet habe.
>  Also per Hand ergibts:
> [mm]A=\pmat{1&4&-7\\1&-2&11\\2&2&}\sim \pmat{1&4&-7\\0&6&-18\\0&0&0}[/mm]
>  
> [mm]\Rightarrow[/mm] rg(A)=2 [mm]\Rightarrow[/mm] dim U = 2 [mm]\Rightarrow U\neq \IR^3[/mm]
>  
> D.h. doch daß [mm]v_3[/mm] aus [mm]v_1[/mm] und [mm]v_2[/mm] dartellbar ist.

Hallo,

bis hierher kann ich gut folgen.

Du könntest nun den Schluß ziehen, daß [mm] v_1 [/mm] und [mm] v_2 [/mm] eine Basis von U sind.

Ich habe allerdings den furchtbaren Verdacht, daß Du meinst, daß

>  
> [mm](1,0,0)^T[/mm] und [mm](4,6,0)^T[/mm] ne Basis

des U sind.
Das stimmt nicht! Was Du leicht daran sehen kannst, daß Du mit den beiden nie und nimmer wirst [mm] v_1 [/mm] erzeugen können.

Von daher brauchst Du zum Aufspannen des orthog. Komplements von U einen anderen als den von Dir ermittelten Vektor.

> doch automatisch/insbesondere, dass er zu allen senktecht
> ist?)

Ja. Wenn er zu beiden Basisvektoren von U senkrecht ist, dann ist er zu allen Vektoren aus U senkrecht.

Gruß v. Angela

Bezug
                                
Bezug
ONB, Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:20 Mo 11.06.2007
Autor: pleaselook

Gut. Also: [mm] span( \vektor{1\\1\\2}, \vektor{4\\-2\\2} ) = U [/mm] mit dim(U)=2
U will ich jetzt mit Hilfe eines weiteren Vektors zu [mm] \IR^3 [/mm] aufspannen.
Das klappt dann mit [mm] \vektor{1\\1\\-1} [/mm] und somit ist [mm]span(\vektor{1\\1\\2}, \vektor{4\\-2\\2}, \vektor{1\\1\\-1})[/mm] eine Basis des [mm] \IR^3. [/mm]
Und das ganze muß ich jetzt transponieren und dann wie oben gesagt weiter verfahren.

Bezug
                                        
Bezug
ONB, Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Mo 11.06.2007
Autor: angela.h.b.


> Gut. Also: [mm]span( \vektor{1\\1\\2}, \vektor{4\\-2\\2} ) = U[/mm]
> mit dim(U)=2
> U will ich jetzt mit Hilfe eines weiteren Vektors zu [mm]\IR^3[/mm]
> aufspannen.
>  Das klappt dann mit [mm]\vektor{1\\1\\-1}[/mm] und somit ist
> [mm]span(\vektor{1\\1\\2}, \vektor{4\\-2\\2}, \vektor{1\\1\\-1})[/mm]
> eine Basis des [mm]\IR^3.[/mm]
>  Und das ganze muß ich jetzt transponieren und dann wie
> oben gesagt weiter verfahren.

Ja.

Es ist [mm] \IR^3=<\vektor{1\\1\\2}, \vektor{4\\-2\\2}>\oplus <\vektor{1\\1\\-1}> [/mm]

und Du mußt gucken, ob (0,6,3) =(-1,5,4) +k(1,1,-1)  ist.

Gruß v. Angela

Bezug
                                                
Bezug
ONB, Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Mo 11.06.2007
Autor: pleaselook

[mm] x=u\perp [/mm] + u [mm] \Rightarrow [/mm] (0,6,3) =(-1,5,4) +k(1,1,-1) mit k= 1
Damit habe ich doch eigentlich schon gezeigt was ich will.
Oder was muß ich hier noch mit [mm] A^T [/mm] bestimmen?
[mm] A^T= \pmat{1&1&2\\4&-2&2\\1&1&-1} [/mm]


wenn ich jetzt von der Basis ausgehend eine ONB bestimmen möchte, muß ich ja noch einen der beiden ersten Vektoren ersetzen, da die ja nicht orthogonal  zueinander sind. Der muß sich ja aus [mm] v_1,v_2 [/mm] und [mm] v_3 [/mm] erzeugen lassen. Und dann skalier ich die auf die Einheitslänge.

Wie kann ich dann die orthogonale Proj. mit der ONB bestimmen. Einfach Transponieren und dann das Produkt bilden.



Bezug
                                                        
Bezug
ONB, Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Mo 11.06.2007
Autor: angela.h.b.


> [mm]x=u\perp[/mm] + u [mm]\Rightarrow[/mm] (0,6,3) =(-1,5,4) +k(1,1,-1) mit
> k= 1
>  Damit habe ich doch eigentlich schon gezeigt was ich
> will.

Ja. Du weißt jetzt, daß (-1,5,4) die orthogonale Projektion von (0,6,3) auf U ist.

Für das, was Du in der Aufgabe tun sollst, brauchst Du keine ONB.

Wenn Du eine ONB haben willst, brauchst Du lediglich [mm] (v_1, v_2) [/mm] zu orthonormieren.  (Nichts mit [mm] v_3 [/mm] !!! Du bräuchtest dann eine ONB von U.)

Und Dein Ergänzungsvektor [mm] v_3 [/mm] müßte noch normiert werden.

Aber für die Aufgabe ist's überflüssig.

Gruß v. Angela

Bezug
                                                                
Bezug
ONB, Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Mo 11.06.2007
Autor: pleaselook

Die soll ich aber auch noch bestimmen und damit dann die orthogonale Projektion von [mm] y=(3,1,7)^T. [/mm]

Und die soll ich ausgehend von [mm] (v_1,v_2,v_3) [/mm] finden.
Die ONB hat ja die beiden Eigenschaften: je zwei Vektoren orthogonal und alle Vektoren haben Länge 1.
Der Betrag der Vektoren ist nicht das Problem, das kann man anpassen.
Aber [mm] v_1 [/mm] ist doch nicht orthogonal zu [mm] v_2. [/mm] Ähh.

Bezug
                                                                        
Bezug
ONB, Projektion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:54 Mo 11.06.2007
Autor: angela.h.b.


> Die soll ich aber auch noch bestimmen und damit dann die
> orthogonale Projektion von [mm]y=(3,1,7)^T.[/mm]

Die orthogonale Projektion worauf? Auch auf U?

Was steht da genau?

Gruß v. Angela

Bezug
                                                                                
Bezug
ONB, Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 Mo 11.06.2007
Autor: pleaselook

in U.

Bezug
                                                                                        
Bezug
ONB, Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Mo 11.06.2007
Autor: angela.h.b.

Na gut.

Wenn Du eine ONB brauchst, dann orthonormalisiere, wie ich es Dir zuvor beschrieben habe. Finde also eine ONB [mm] (v_1, v_2^') [/mm] von [mm] U=. [/mm]

Der Ergänzungsvektor von vorhin ist automatisch senkrecht dazu, da er ja auf ganz U senkrecht steht.

Dann schreibst Du [mm] y=(3,1,7)^T [/mm] als

[mm] (3,1,7)^T=av_1+bv_2^'+c*Ergänzungsvektor [/mm]

[mm] av_1+bv_2^' [/mm] ist dann die Projektion auf U.

(Aber wie gesagt: um die Projektion auf U zu finden, brauchst Du die ONB nicht.)

Gruß v. Angela





Bezug
                                                                                                
Bezug
ONB, Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 Mo 11.06.2007
Autor: pleaselook

Ok. Dann hab ich jetzt als [mm] v_2'=(-3,3,0) [/mm]
damit ist die Projektion von [mm]y= \vektor{3\\1\\7}=a \bruch{1}{\sqrt{6}}\vektor{1\\1\\2}+b \bruch{1}{\sqrt{18}}\vektor{-3\\3\\0}+c \bruch{1}{\sqrt{3}}\vektor{1\\1\\-1}[/mm]

So meintest du das doch, oder?
Jetzt noch a,b,c bestimmen und die stellen die Projektion da [mm] (a,b,c)^T. [/mm]
Und die ONB ist die drei normierten Vektoren nebeneinandergeschrieben? Oder brauch ich da wieder nur die ersten zwei da ja dimU  =2 .

Bezug
                                                                                                        
Bezug
ONB, Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Mo 11.06.2007
Autor: angela.h.b.


>  Und die ONB ist die drei normierten Vektoren
> nebeneinandergeschrieben? Oder brauch ich da wieder nur die
> ersten zwei da ja dimU  =2 .

Die drei nebeneinander sind eine ONB vom [mm] \IR^3, [/mm]

die ersten beiden nebeneinander sind eine ONB von U.

Also schreib das, was die wissen wollen.


> Ok. Dann hab ich jetzt als [mm]v_2'=(-3,3,0)[/mm]
>  damit ist die Projektion von [mm]y= \vektor{3\\1\\7}=a \bruch{1}{\sqrt{6}}\vektor{1\\1\\2}+b \bruch{1}{\sqrt{18}}\vektor{-3\\3\\0}+c \bruch{1}{\sqrt{3}}\vektor{1\\1\\-1}[/mm]
>  
> So meintest du das doch, oder?

Ja.

>  Jetzt noch a,b,c bestimmen und die stellen die Projektion
> da [mm](a,b,c)^T.[/mm]

Hui.
Es wäre [mm] (a,b,c)^T [/mm] die Darstellung von y bzgl. Deiner ONB von [mm] \IR^3. [/mm]

Die Projektion auf U in kartesischen Koordinaten ist a [mm] \bruch{1}{\sqrt{6}}\vektor{1\\1\\2}+b \bruch{1}{\sqrt{18}}\vektor{-3\\3\\0}, [/mm] in Koordinaten bzgl der ONB von [mm] \IR^3 [/mm] wäre es [mm] (a,b,0)^T. [/mm]

Kommt drauf an, was die genau von Dir wollen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]