Nullstellensatz < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
Aufgabe: Zeigen Sie, dass die Gleichung tan x = [mm] \frac{3}{2}x [/mm] genau eine Lösung L [mm] \in (\frac{\pi}{4}, [/mm] 1) besitzt.
Mein Versuch:
Ich zeige, zunächst, dass die Gleichung mindestens eine Lösung hat. Dann möchte ich zeigen, dass sie genau eine Lösung hat. Also:
Jede Nullstelle von f(x) = tan x - [mm] \frac{3}{2}x [/mm] ist eine Lösung der Gleichung.
[mm] tan(\frac{\pi}{4}) [/mm] = 1 und [mm] \frac{3}{2}x [/mm] mit x = [mm] \frac{\pi}{4} [/mm] ergibt: [mm] \frac{3\pi}{8}
[/mm]
[mm] \Rightarrow tan(\frac{\pi}{4}) [/mm] = 1 < [mm] \frac{3\pi}{8} \Rightarrow f(\frac{\pi}{4}) [/mm] < 0
tan(1) [mm] \approx [/mm] 1.55741 (Taschenrechner) und [mm] \frac{3}{2}x [/mm] mit x = 1 ergibt: [mm] \frac{3}{2}
[/mm]
[mm] \Rightarrow [/mm] tan(1) [mm] \approx [/mm] 1.55741 > [mm] \frac{3}{2} \Rightarrow [/mm] f(1) > 0
Da [mm] f(\frac{\pi}{4}) [/mm] < 0 < f(1) folgt mit dem Nullstellensatz: [mm] \exists [/mm] c [mm] \in (\frac{\pi}{4}, [/mm] 1) : f(c) = 0. Damit wurde gezeigt, dass es mind. eine Lösung gibt. Stimmt das soweit?
Nun muss ich noch zeigen, dass es genau eine Lösung gibt und genau damit habe ich Probleme. Ich versuchs mal:
Da tan x in [mm] (\frac{\pi}{4}, [/mm] 1) steng monoton wächst und [mm] \frac{3}{2}x [/mm] auch steng monoton wächst folgt, dass f(x) auf [mm] (\frac{\pi}{4}, [/mm] 1) injektiv ist, was bedeutet, dass es nur eine Lösung gibt. Das kommt mir sehr komisch vor... Hilfe :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:19 Di 05.02.2008 | Autor: | leduart |
Hallo
Der erste Teil ist richtig.
Der zweite Teil nicht: zeichne mal ne aufsteigende wellige Linie als Graph einer fkt, also monoton steigend, aber mal mehr, mal weniger. die kannst du mit ner Geraden schneiden und viele Schnittstellen kriegen.
Zeig dass f(x) selbst monoton steigend ist in dem Gebiet (Ableitung) dann kann sie wirklich nur eine nullstelle haben (Mittelwertsatz)
Gruss leduart
|
|
|
|