matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungNullstellenbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Nullstellenbestimmung
Nullstellenbestimmung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Do 07.02.2008
Autor: phil-abi05

Aufgabe
[mm] f(x)=x-\wurzel{x+2} [/mm]

Hallo,

komm gerade aus einer Klausur und mich beschäftigt immer noch die Frage, wie der Graph aussieht. Habe als Nullstellen x1=2 und x2=-1 raus, allerdings wenn ich mir den Graph zeichnen lasse, gibt es immer nur die Nullstelle bei x=2. Für die Nulllstellenberechnung benutze ich die pq-Formel die hier lautet:

x² - x - 2 = 0

Schon mal danke, sonst kann ich heute nicht mehr einschlafen.

        
Bezug
Nullstellenbestimmung: Probe machen
Status: (Antwort) fertig Status 
Datum: 18:34 Do 07.02.2008
Autor: Loddar

Hallo Phil!


Rechnerisch erhältst Du mit der MBp/q-Formel zwei Lösungen. Allerdings hast Du während Deiner Umformungen bis dahin auch (mind.) einmal die Gleichung quadriert, um die Wurzel zu eliminieren.

Dieses Quadrieren ist aber keine Äquivalenzumformung, so dass hier immer eine Probe mit der Ausgangsgleichung durchzuführen ist.

Und diese Probe durch Einsetzen ergibt dann, dass [mm] $x_2 [/mm] \ = \ -1$ keine Lösung der Ausgangsgleichung und damit auch keine Nullstelle ist.


Gruß
Loddar


Bezug
                
Bezug
Nullstellenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 Do 07.02.2008
Autor: phil-abi05

Ok, ich erinnere mich das schon mal gehört zu haben. Aber das war vll mal vor 5 Jahren und naja... es regt mich auf.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]