matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenNullstellenberechnung von e-Fu
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Nullstellenberechnung von e-Fu
Nullstellenberechnung von e-Fu < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenberechnung von e-Fu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Mi 22.11.2006
Autor: Idale

Aufgabe
[mm] p(x)=7*e^{\bruch{x-1}{x+3}} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi,

die Aufgabe lautet [mm] p(x)=7*e^{\bruch{x-1}{x+3}} [/mm] dabei soll ich den Definitionsbereich und die Nullstellen ermittlen.

Erstres ist kein Problem [mm] D=\IR\-3 [/mm]

Bei der Nullstellenberechnung scheiterts aber...

0 = [mm] 7*e^{\bruch{x-1}{x+3}} [/mm] |*7

0 = [mm] e^{\bruch{x-1}{x+3}} [/mm]   |ln

1 = [mm] \bruch{x-1}{x+3} [/mm]

x+3 = x -1   | -x

0 = -4

Und das kann doch nicht sein, oder????

Danke

MFG






        
Bezug
Nullstellenberechnung von e-Fu: alles richtig so weit
Status: (Antwort) fertig Status 
Datum: 15:34 Mi 22.11.2006
Autor: informix

Hallo Idale,

> [mm]p(x)=7*e^{\bruch{x-1}{x+3}}[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hi,
>  
> die Aufgabe lautet [mm]p(x)=7*e^{\bruch{x-1}{x+3}}[/mm] dabei soll
> ich den Definitionsbereich und die Nullstellen ermittlen.
>  
> Erstres ist kein Problem [mm]D=\IR \backslash \{-3\}[/mm]
>  
> Bei der Nullstellenberechnung scheiterts aber...
>  
> 0 = [mm]7*e^{\bruch{x-1}{x+3}}[/mm] |*7
>  
> 0 = [mm]e^{\bruch{x-1}{x+3}}[/mm]   |ln
>  
> 1 = [mm]\bruch{x-1}{x+3}[/mm]
>  
> x+3 = x -1   | -x
>  
> 0 = -4
>  
> Und das kann doch nicht sein, oder????
>

doch, das kann sein: es bedeutet, dass diese Gleichung keine Lösung hat [mm] \Rightarrow [/mm] es gibt keine Nullstelle.

zeichne die Funktion doch mal mit []FunkyPlot.


Gruß informix

Bezug
        
Bezug
Nullstellenberechnung von e-Fu: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Mi 22.11.2006
Autor: fisch.auge


> [mm]p(x)=7*e^{\bruch{x-1}{x+3}}[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hi,
>  
> die Aufgabe lautet [mm]p(x)=7*e^{\bruch{x-1}{x+3}}[/mm] dabei soll
> ich den Definitionsbereich und die Nullstellen ermittlen.
>  
> Erstres ist kein Problem [mm]D=\IR\-3[/mm]
>  
> Bei der Nullstellenberechnung scheiterts aber...
>  
> 0 = [mm]7*e^{\bruch{x-1}{x+3}}[/mm] |*7
>  
> 0 = [mm]e^{\bruch{x-1}{x+3}}[/mm]   |ln
>  

ja allerdings ist der schritt hier nicht i.O., da der ln für 0 nicht existiert!

> 1 = [mm]\bruch{x-1}{x+3}[/mm]
>  
> x+3 = x -1   | -x
>  
> 0 = -4
>  
> Und das kann doch nicht sein, oder????
>
> Danke
>  
> MFG
>  
>
>
>
>  


Bezug
                
Bezug
Nullstellenberechnung von e-Fu: danke für die Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:13 Mi 22.11.2006
Autor: informix

Hallo fisch.auge,

danke fürs Kontrolllesen. ;-)

Die e-Funktion hat tatsächlich nirgendwo eine Nullstelle!

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]