matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenNullstellen berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Trigonometrische Funktionen" - Nullstellen berechnen
Nullstellen berechnen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 Do 07.04.2011
Autor: anno

Aufgabe
Geben Sie alle Nullstellen der folgenden Funktion an:

f(x) = [mm] 6sin(\bruch{\pi-x}{2}) [/mm] + [mm] cos(\bruch{x}{2}) [/mm]

Hinweis:

k [mm] \in \IZ [/mm]
0 = [mm] cos(\bruch{2k + 1}{2}\pi) [/mm]
0 = [mm] sin(k\pi) [/mm]


Also ich habe es folgendermaßen probiert zu lösen, allerdings ohne Erfolg:

0 = [mm] 6sin(\bruch{\pi-x}{2}) [/mm] + [mm] cos(\bruch{x}{2}) [/mm] = [mm] sin(\bruch{\pi-x}{2}) [/mm] + [mm] cos(\bruch{\pi}{2}) [/mm]

0 = [mm] sin(\bruch{\pi-x}{2}) [/mm] + [mm] cos(\bruch{x}{2}) \gdw k\pi [/mm] + [mm] \bruch{2k + 1}{2}\pi [/mm] = [mm] \bruch{\pi-x}{2} [/mm] + [mm] \bruch{x}{2} [/mm]


Allerdings kommt da nichts gescheites bei raus, da sich das x auf der rechten Seite 0 wird.

Was mache ich denn da falsch?

        
Bezug
Nullstellen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Do 07.04.2011
Autor: abakus


> Geben Sie alle Nullstellen der folgenden Funktion an:
>  
> f(x) = [mm]6sin(\bruch{\pi-x}{2})[/mm] + [mm]cos(\bruch{x}{2})[/mm]

Hallo,
bei den Winkeln [mm] \bruch{\pi-x}{2} [/mm] und [mm] \bruch{x}{2} [/mm] handelt es sich um zwei Winkel, die sich zu [mm] \bruch{\pi}{2} [/mm] ergänzen, also um Komplementwinkel.
Es gilt deshalb [mm] sin(\bruch{\pi-x}{2})=cos(\bruch{\pi}{2}) [/mm]

Somit gilt [mm] f(x)=7*cos(\bruch{\pi}{2}) [/mm]

Gruß Abakus

>  Hinweis:
>  
> k [mm]\in \IZ[/mm]
>  0 = [mm]cos(\bruch{2k + 1}{2}\pi)[/mm]
>  0 = [mm]sin(k\pi)[/mm]
>  
>
> Also ich habe es folgendermaßen probiert zu lösen,
> allerdings ohne Erfolg:
>  
> 0 = [mm]6sin(\bruch{\pi-x}{2})[/mm] + [mm]cos(\bruch{x}{2})[/mm] =
> [mm]sin(\bruch{\pi-x}{2})[/mm] + [mm]cos(\bruch{\pi}{2})[/mm]
>  
> 0 = [mm]sin(\bruch{\pi-x}{2})[/mm] + [mm]cos(\bruch{x}{2}) \gdw k\pi[/mm] +
> [mm]\bruch{2k + 1}{2}\pi[/mm] = [mm]\bruch{\pi-x}{2}[/mm] + [mm]\bruch{x}{2}[/mm]
>  
>
> Allerdings kommt da nichts gescheites bei raus, da sich das
> x auf der rechten Seite 0 wird.
>  
> Was mache ich denn da falsch?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]