matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisNullstellen (X) erraten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Nullstellen (X) erraten
Nullstellen (X) erraten < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen (X) erraten: Da gibt es doch einen Trick..?
Status: (Frage) beantwortet Status 
Datum: 17:21 So 29.01.2006
Autor: Quaeck

Aufgabe
f(x)= [mm] x^3-2x^2-8x [/mm]

Es gibt doch immer mal solche Funktionen, wobei man "x" erraten muss, um eine Nullstelle zu bekommen. Doch jetzt habe ich den Trick nicht mehr auf Lager mit dem es ganz einfach ist diese Zahl zu erraten. Ich glaube es gibt die Regel, dass immer die Teiler letzten Zahl in der Funktion für "x" einsetzbar ist um auf das Ergebnis null zu kommen, oder? Wisst ihr was ich meine? Kennt ihr diese Regel noch, könnt ihr mir vielleicht sagen wie diese nochmal war, habe sie leider nicht mehr parat und brauche sie.. Danke euch für jede Antwort.=)

        
Bezug
Nullstellen (X) erraten: Teiler des Absolutgliedes
Status: (Antwort) fertig Status 
Datum: 17:29 So 29.01.2006
Autor: Loddar

Hallo Quaeck!


Du bist schon auf dem richtigen Weg. Bei Existenz von ganzzahligen Nullstelle(n) handelt es sich um ganzzahlige Teiler (beiderlei Vorzeichens) des Absolutgliedes, also der Term ohne $x_$ .


In Deinem Falle geht es aber schneller, indem Du zunächst $x_$ ausklammerst und anschließend die MBp/q-Formel anwendest.


Gruß
Loddar


Bezug
                
Bezug
Nullstellen (X) erraten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 So 29.01.2006
Autor: Quaeck

Genau das meinte ich, dankeschön für deine Antwort.
Das Ausklammern und die folgende PQ-Formel, wusste ich zwar schon aber auch danke dafür.=)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]