matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenNullstellen Problem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Nullstellen Problem
Nullstellen Problem < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Mo 22.05.2006
Autor: Leni-chan

Aufgabe
Ermitteln Sie die Anzahl der Schnittpunkte des Graphen von f(x) mit der x-Achse in Abhängigkeit von a und geben Sie deren Koordinaten an!

[mm] f(x)=a\*ln(x^2+a)-a [/mm]  (a>0)

Also ich hab da ein Problem. Und zwar müsste ich hier bei dieser Aufgabe einfach die Funktion 0 setzen und am Ende hätte ich 2 Nullstellen, bloß ist mein Problem, dass ja a größer als Null sein muss und wenn ich mir jetzt ein Bsp. im GTR  anschaue mit a=3 dann hat diese Funktion überhaupt keine NST.
Also das sind meine NST die ich rausbekommen habe:

[mm] x1=\wurzel{e - a} [/mm]
[mm] x2=-\wurzel{e - a} [/mm]

Und dann kommt auch noch mein nächstes Problem, dass ich nicht weiß, wie es dann weitergeht und ich die Anzahl der Schnittpunkte mit der x-Achse rausbekomme, oder wie ich das Beweisen soll.
Es wäre echt toll, wenn  mir da jemand weiterhelfen könnte.

LG Leni-chan

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Nullstellen Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Mo 22.05.2006
Autor: leduart

Hallo Leni
> Ermitteln Sie die Anzahl der Schnittpunkte des Graphen von
> f(x) mit der x-Achse in Abhängigkeit von a und geben Sie
> deren Koordinaten an!
>  
> [mm]f(x)=a\*ln(x^2+a)-a[/mm]  (a>0)
>  Also ich hab da ein Problem. Und zwar müsste ich hier bei
> dieser Aufgabe einfach die Funktion 0 setzen und am Ende
> hätte ich 2 Nullstellen, bloß ist mein Problem, dass ja a
> größer als Null sein muss und wenn ich mir jetzt ein Bsp.
> im GTR  anschaue mit a=3 dann hat diese Funktion überhaupt
> keine NST.
>  Also das sind meine NST die ich rausbekommen habe:
>  
> [mm]x1=\wurzel{e - a}[/mm]
>  [mm]x2=-\wurzel{e - a}[/mm]

Du hast nur nicht gemerkt, dass du schon fertig bist! Richtig hast du festgestellt ,dass es für a=3 keine Nullstelle gibt.
und 2 Nullstellen hast du auch rausgekriegt! aber die gibts ja nur wenns die Wurzeln gibt, also das was drunter steht größer oder gleich 0 ist.
also danach 0 Nullstellen davor 2 Nullstellen, und wenn es genau o ist?
Das musst du jetzt nur noch schön hinschreiben mit Ungl. für a:
Für 0<a<  ?  2 Nst.
für a=           1Nst
für a>? keine Nst.
Du siehst, die eigentliche Arbeit hast du schon geleistet!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]