matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenNullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Nullstellen
Nullstellen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:57 Sa 12.05.2012
Autor: Fee

Aufgabe
a) Zeigen Sie : Der Graph der Funktion f mit f(x) = [mm] x^5 [/mm] + x + 1                      
      schneidet die x - Achse genau einmal.

b) Berechnen Sie die Abszisse dieses Schnittpunktes auf 4 Dezimalzahlen.

Hi :)

Bei Aufgabe a) habe ich leider keine Ahnung wie ich ansetzten soll ...

bei b) muss man das Newton-Verfahren , dass wiß ich :)

Könnt ihr mir bei Aufgabe a) helfen ?
Vielen Danh :)

        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Sa 12.05.2012
Autor: Diophant

Hallo,

> Bei Aufgabe a) habe ich leider keine Ahnung wie ich
> ansetzten soll ...

Untersuche das Grenzverhalten für [mm] x->-\infty [/mm] bzw. [mm] x->\infty [/mm] sowie das Monotonieverhalten. Führe dann noch die Stetigkeit von Polynomfunktionen auf ganz [mm] \IR [/mm] ins Feld*. Aus allem zusammen folgt die Behauptung.

> bei b) muss man das Newton-Verfahren , dass wiß ich :)

Man muss nicht, es gibt auch andere Näherungsverfahren. Aber im Rahmen der Schulmathematik ist es i.d.R. das einzige, das zur Verfügung steht. Also ist es hier sicherlich vorgesehen. :-)

*Siehe dazu auch die folgende Diskussion zwischen Marcel und mir.


Gruß, Diophant


Bezug
                
Bezug
Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:13 Sa 12.05.2012
Autor: Marcel

Hallo,

> Hallo,
>  
> > Bei Aufgabe a) habe ich leider keine Ahnung wie ich
> > ansetzten soll ...
>  
> Untersuche das Grenzverhalten für [mm]x->-\infty[/mm] bzw.
> [mm]x->\infty[/mm]

es würde auch mit dem

> sowie das Monotonieverhalten.


reichen, einfach sowas wie $f(-1) < [mm] 0\,$ [/mm] und $f(0) > [mm] 0\,$ [/mm] nachzurechnen!

>  Aus beidem zusammen
> folgt die Behauptung.

Daraus folgt nur die Eindeutigkeit im Falle der Existenz einer Nullstelle!

@ Fee:
Tipp: Monotonieverhalten kann man leicht vermittels [mm] $f\,'$ [/mm] erkennen!

P.S.
Man sollte hier, um die Existenz einer Nullstelle gesichert zu haben, auch nicht die Anwendung des Zwischenwertsatzes vergessen!!

Gruß,
  Marcel

Bezug
                        
Bezug
Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 Sa 12.05.2012
Autor: Diophant

Hallo Marcel,

> es würde auch mit dem
>
> > sowie das Monotonieverhalten.
>
>
> reichen, einfach sowas wie [mm]f(-2) < 0\,[/mm] und [mm]f(0) > 0\,[/mm]
> nachzurechnen!

ja, natürlich. Ich wollte nur ein allgemeingültiges Verfahren angeben.


Gruß, Diophant

Bezug
                                
Bezug
Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Sa 12.05.2012
Autor: Marcel

Hallo Diophant,

> Hallo Marcel,
>  
> > es würde auch mit dem
>  >

> > > sowie das Monotonieverhalten.
>  >

> >
> > reichen, einfach sowas wie [mm]f(-2) < 0\,[/mm] und [mm]f(0) > 0\,[/mm]
> > nachzurechnen!
>  
> ja, natürlich. Ich wollte nur ein allgemeingültiges
> Verfahren angeben.

okay. Aber Du musst noch etwas ergänzen, damit auch die Existenz einer Nullstelle gesichert ist.
(Und sei es nur der Satz, dass Polynomfunktionen stetig sind.)

Gruß,
  Marcel

Bezug
                                        
Bezug
Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:25 Sa 12.05.2012
Autor: Diophant

Hallo,

> okay. Aber Du musst noch etwas ergänzen, damit auch die
> Existenz einer Nullstelle gesichert ist.
> (Und sei es nur der Satz, dass Polynomfunktionen stetig
> sind.)

hm, das ist mathematisch schon klar. Aber die gängige Praxis in der Schule verzichtet i.d.R. darauf, da der Zustand der Stetigkeit hier (bei ganzrationalen Funktionen) in gewissem Sinn als 'normal' angenommen wird. Bei uns in BW kommen zu dem Zeitpunkt, wo solche Aufgaben gestellt werden, Funktionen mit Definitionslücken noch gar nicht vor. Wir haben hier ja auch dieses Jahr schon erfolgreich die Quotientenregel im Abitur abgeschafft... ^^

Ich ergänze es oben aber dennoch: wir sind hier schließlich ein ernsthaftes Forum. ;-)


Gruß, Diophant


Bezug
                                                
Bezug
Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Sa 12.05.2012
Autor: Marcel

Hallo,

> Hallo,
>  
> > okay. Aber Du musst noch etwas ergänzen, damit auch die
> > Existenz einer Nullstelle gesichert ist.
>  > (Und sei es nur der Satz, dass Polynomfunktionen stetig

> > sind.)
>  
> hm, das ist mathematisch schon klar. Aber die gängige
> Praxis in der Schule verzichtet i.d.R. darauf, da der
> Zustand der Stetigkeit hier (bei ganzrationalen Funktionen)
> in gewissem Sinn als 'normal' angenommen wird. Bei uns in
> BW kommen zu dem Zeitpunkt, wo solche Aufgaben gestellt
> werden, Funktionen mit Definitionslücken noch gar nicht
> vor.

Definitionslücken erzwingen keine Unstetigkeit: $f: [mm] \IR \setminus \{0\} \to \IR$ [/mm] mit [mm] $f(x):=1/x\,$ [/mm] ist STETIG! An einer Definitionslücke, hier etwa [mm] $0\,,$ [/mm] gibt's per Definitionem keine Aussage über (Un-)Stetigkeit. Dass [mm] $f\,$ [/mm] dennoch die Erlaubnis hat, keine Nullstelle haben zu dürfen, liegt hier daran, dass der Zwischenwertsatz nicht anwendbar ist, weil Intervalle der Bauart [mm] $[a,b]\,$ [/mm] mit $a < 0 < [mm] b\,$ [/mm] nicht $[a,b] [mm] \subseteq \IR \setminus \{0\}$ [/mm] erfüllen. Die Voraussetzung zur Anwendung des ZWS sind nicht erfüllt!

> Wir haben hier ja auch dieses Jahr schon erfolgreich
> die Quotientenregel im Abitur abgeschafft... ^^

Ernsthaft? Ach Du meine Güte... ^^
  

> Ich ergänze es oben aber dennoch: wir sind hier
> schließlich ein ernsthaftes Forum. ;-)

Gut ;-)

Gruß,
  Marcel

Bezug
                                                
Bezug
Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 12.05.2012
Autor: M.Rex

Hallo Diophant

> Wir (in BW) haben hier ja auch dieses Jahr schon erfolgreich
> die Quotientenregel im Abitur abgeschafft... ^^

Nicht nur ihr. AUch hier in NRW ist die Quotientenregel im Grundkurs gar kein Thema mehr, und in LK auch nur noch optional.

>  
> Ich ergänze es oben aber dennoch: wir sind hier
> schließlich ein ernsthaftes Forum. ;-)

Sehr gut.

>  
>
> Gruß, Diophant
>  

Gruß aus Bielefeld

Marius


Bezug
                                                        
Bezug
Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:31 Sa 12.05.2012
Autor: Marcel

Hallo,

> Hallo Diophant
>
> > Wir (in BW) haben hier ja auch dieses Jahr schon
> erfolgreich
> > die Quotientenregel im Abitur abgeschafft... ^^
>  
> Nicht nur ihr. AUch hier in NRW ist die Quotientenregel im
> Grundkurs gar kein Thema mehr, und in LK auch nur noch
> optional.

sollte ich jemals Mathe-Lehrer werden, würde ich sie im Grundkurs dennoch lehren. Das kann doch nicht sein. Demnächst muss man den Leuten an der Uni noch das Subtrahieren von Zahlen lehren, weil sie in der Schule nur noch die Addition gelernt haben. Also irgendwo hört's aber auch wirklich auf - sonst kann man demnächst an der Uni erstmal ein Einführungsjahr veranstalten, damit die Leute wenigstens minimale Grundlagen für ein Mathematikstudium zur Verfügung haben...

P.S.:
Quotientenregel kann man auch schön versteckt einführen und auch auf "schnellem" Wege den Schülern beibringen, auch, wenn's formal nicht das sauberste ist:
1.) Kettenregel steht hoffentlich noch zur Verfügung. Die Erkenntnis [mm] $(x^n)'=n*x^{n-1}$ [/mm] sicher auch (ich würde einfach sagen, dass sie auch für $n [mm] \in \IZ$ [/mm] gilt - wer's beweisen will, darf's als freiwillige Zusatz-Hausaufgabe ansehen). Daher und mit der Produktregel:
[mm] $$(f/g)'=(f\,'*(g^{-1}))'=f\,'*g^{-1}+f*(g^{-1})'=f\,'*\frac{1}{g}+f*(-1)*(g^{-1-1}*g\,')=\frac{f'}{g}*\frac{g}{g}-\frac{f*g'}{g^2}=\frac{f\,'g-fg\,'}{g^2}\,.$$ [/mm]

Als Lehrer würde ich schlimmstenfalls dieses einfach den Schülern dann vorsetzen. ;-)

Und dann sollten sie Aufgaben mithilfe des Ergebnisses dieser Rechnung lösen. Ich weiß, ist fies, aber wenn man solche sinnlosen Kürzungen vornimmt: So kann man sie umgehen ^^

P.S.
Oben bedeutet ausnahmsweise die Notation [mm] $g^{-1}$ [/mm] mal wirklich [mm] $g^{-1}:=1/g\,,$ [/mm] und wird nicht als Notation für "die Umkehrfunktion" verwendet.

P.P.S.
Dabei habe ich verwendet:
[mm] $g^{-1}=h \circ [/mm] g$ mit [mm] $h(x):=x^{-1}\,,$ [/mm] so dass wegen der Kettenregel folgt
[mm] $$(g^{-1})'(x)=(h \circ g)'(x)=h'(g(x))*g'(x)=-1*(g(x))^{-2}*g'(x)=-g'(x)/(g(x))^2\,,$$ [/mm]
also
[mm] $$(g^{-1})'=-g'/g^2\,.$$ [/mm]

(Erneut: Oben bedeutet ausnahmsweise die Notation [mm] $g^{-1}$ [/mm] mal wirklich [mm] $g^{-1}:=1/g\,,$ [/mm] und wird nicht als Notation für "die Umkehrfunktion" verwendet!)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]