matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisNullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Nullstellen
Nullstellen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Di 03.02.2004
Autor: Nick

Hallo, könnt ihr mir nen Tipp bei der Aufgabe geben? Ich hab mal wieder nen massives Eichenbrett vor dem Kopf.

Gegeben sei die folgende Abbildungsvorschrift:

f(x) := exp([mm]\bruch{ln(1+x²)}{x}[/mm].

Bestimmen Sie den größt möglichen Definitionsbereich zu f und geben Sie die Grenzwerte von f an den Rändern des Definitionsbereiches an.

Danke schon mal!!

Euer
Nick

        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Di 03.02.2004
Autor: Marc

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Nick,

dann will ich mir nochmal an Grenzwerten die Finger verbrennen ;-)

Der maximal Definitionsbereich ist offenbar $D=\IR\setminus\{0\}$, denn das Argument des Logarithmus ist für alle $x\in\IR$ positiv, und $\exp$ schränkt den Definitionsbereich auch nicht ein. "Probleme" macht nur der Nenner des Bruches, wenn er Null wird, also bei $x=0$.

Damit ergeben sich vier Ränder des Definitionsbereichs:
(a) $-\infty$
(b) $+\infty$
(c) $-0$ (von links an die Null)
(d) $+0$ (von rechts an die Null)

Bei all diesen Grenzwerten müßtest du mit den Sätzen von l'Hôpital weiter kommen, ich probiere es mal für (b):

Und zwar berechne ich zunächst den Limes des Arguments von $\exp$, da
$\limes \exp\left( \frac{f(x)}{g(x)}\right) = \exp\left( \limes \frac{f(x)}{g(x)}\right)$
gilt, wegen der Stetigkeit von $\exp$.

$\limes_{x\to+\infty}\frac{\ln(1+x^2)}{x}=\limes_{x\to+\infty}\frac{f(x)}{g(x)}}$

Es gilt $f(x)=\ln(1+x^2)\to+\infty$ und $g(x)=x\to+\infty$ für $x\to+\infty$, nach dem Satz von l'Hôpital wäre der Limes also gleich (unter der Voraussetzung, dass folgender Limes überhaupt exisitiert):

$=\limes_{x\to\+\infty}\frac{f'(x)}{g'(x)}$
$=\limes_{x\to\+\infty}\frac{2x*\frac{1}{1+x^2}}{1}$
$=\limes_{x\to\+\infty}\frac{2x}{1+x^2}=0$

Damit haben wir
$\limes_{x\to+\infty}\exp\left( \frac{\ln(1+x^2)}{x}\right)$
$=\exp\left( \limes_{x\to+\infty}\frac{f(x)}{g(x)}}\right) $
$=\exp\left( \limes_{x\to+\infty}\frac{f'(x)}{g'(x)}}\right) $
$=\exp\left( 0 \right) $
$=1$

Kommst du nun zurecht mit den anderen Grenzwerten? Falls nicht, weißt du ja, wo du uns findest :-)

Alles Gute,
Marc.

Bezug
                
Bezug
Nullstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 Di 03.02.2004
Autor: Nick

Danke,

habe jetzt alles verstanden. Hatte wohl ein Brett vor dem Kopf.

Nick.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]