matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeNullstelle Argumentation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Extremwertprobleme" - Nullstelle Argumentation
Nullstelle Argumentation < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstelle Argumentation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 Fr 13.01.2017
Autor: pc_doctor

Aufgabe
f ist 2 fach differenzierbar.
f:(0, [mm] \infty) [/mm] -> [mm] \IR [/mm]
Für ein a hat f die Eigenschaft, dass f(a) < 0 und f'(a) > 0
und [mm] \forall [/mm] x > a: f''(x) [mm] \ge [/mm] 0

Argumentiere, dass f rechts von a genau eine Nullstelle besitzt.

Hallo,

was soll ich da noch argumentieren? Ich habe die Skizze gemacht und alles sieht schlüssig aus. f(a) ist negativ, die Ableitung ist positiv, hat also an der Stelle einen Tiefpunkt, die zweite Ableitung ist für alle x > a positiv, also linksgekrümmt, sie muss somit die x Achse rechts von a schneiden, sie macht kurz vor der x Achse keinen Schwenker und konvergiert nicht gegen einen Wert auf der x-Achse oder ähnliches, weil f''(x) [mm] \ge [/mm] 0. Kann man noch was ergänzen?

Vielen Dank im Voraus.

        
Bezug
Nullstelle Argumentation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Fr 13.01.2017
Autor: Diophant

Hallo,

vermutlich ist das alles richtig gedacht. Aber bestätigen kann man es nicht, weil du sprachlich alles durcheinander schmeißt. Wenn bspw. f''(x)>0 gilt, dann ist nicht die zweite Ableitung linksgekrümmt, sondern der Graph der Funktion f.

Ich würde etwa so formulieren: aus f'(a)>0 und f''(x)>0 für [mm] x\ge{a} [/mm] folgt, dass die Steigung des Graphen von f rechts von a streng monoton wächst. Mit der Stetigkeit (weshalb ist f stetig?) folgt mit dem Nullstellensatz die Behauptung, denn f kann aus o.g. Gründen keine obere Schranke besitzen. Dies garantiert positive Funktionswerte, daher der Nullstellensatz. Außerdem ist f (rechts von a) streng monoton steigend (wieder: weshalb?), also existiert genau eine Nullstelle.

Gruß, Diophant



Bezug
                
Bezug
Nullstelle Argumentation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 Fr 13.01.2017
Autor: Omega91

Hallo Diophant,


was genau meinst du denn mit Nullstellensatz ? Wohl doch nicht den von Hilbert ???


Lg Omega

Bezug
                        
Bezug
Nullstelle Argumentation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:06 Fr 13.01.2017
Autor: Diophant

Hallo,

nein: Bolzano.

Ich habe diese Bezeichnung für den hier vorliegenden Fall des Zwischenwertsatzes gewählt, da ich seit je her an sie gewöhnt bin. Kann sein, dass man heute nur noch 'Zwischenwertsatz' sagt, das ist aber hier doch völlig egal: Es sollte doch klar geworden sein, was inhaltlich gemeint ist?

Gruß, Diophant

Bezug
                                
Bezug
Nullstelle Argumentation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:04 Fr 13.01.2017
Autor: pc_doctor

Hallo, danke für die Antwort.  Das ist natürlich besser :) f ist stetig, weil f differenzierbar ist, zweifach.

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]