matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenNullmengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Nullmengen
Nullmengen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 Fr 15.01.2010
Autor: Bodo0686

Aufgabe
Zeigen Sie:
a) Eine Nullmenge hat keinen inneren Punkte
b) Eine stetige Funktion f auf [mm] \IR^n [/mm] mit [mm] ||f||_1=0 [/mm]

Hallo,

könnt ihr mir hier weiterhelfen?
Ich komme nicht so recht weiter!

zu a) Sei A [mm] \subseteq \IR^n. [/mm] A ist Nullmenge wenn [mm] \mu(A)=0 [/mm]

[mm] \mu(A)=\begin{cases} 1, & \mbox{für } x \in A \mbox{ } \\ 0, & \mbox{für } x\notin A \mbox{} \end{cases} [/mm]

Danke!

        
Bezug
Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Fr 15.01.2010
Autor: gfm

Ich nehme mal an, dass der Kontext zu a) der [mm] \IR^{n} [/mm] mit dem LB-Maß [mm] \lambda [/mm] ist.

Zu jedem innerern Punkt gibt es eine ihn enthaltende Umgebung, die ganz in der Menge liegt. Im [mm] \IR^{n} [/mm] könnte man Bälle nehmen, welche ganz sicher ein von Null verschiedenes LB-Maß haben.

Bei b) fehlt mir was...

Bezug
                
Bezug
Nullmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Di 19.01.2010
Autor: Bodo0686

Hallo,

also ist a so korrekt?

Bei b) habe ich etwas vergessen... "ist die Nullfunktion"

Grüße

Bezug
                        
Bezug
Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Di 19.01.2010
Autor: XPatrickX

Hallo,

nehme für b) an es wäre nicht die Nullfunktion. Dann gibt es einen Punkt [mm] x_0 [/mm] mit [mm] f(x_0)=c>0. [/mm] Aufgrund der Stetigkeit gibt es eine ganze Umgebung um [mm] x_0, [/mm] sodass die Funktion dort positiv ist. Kann dann noch das [mm] $L_1$ [/mm] -Maß=0 sein?

Gruß Patrick

Bezug
                                
Bezug
Nullmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Di 19.01.2010
Autor: Bodo0686

ich denke nicht...

Bezug
                                        
Bezug
Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Di 19.01.2010
Autor: XPatrickX

Ja,
dann schreibe das noch sauber und vernünftig auf und du bist fertig mit b.)

Bezug
                        
Bezug
Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Di 19.01.2010
Autor: fred97


> Hallo,
>  
> also ist a so korrekt?

Wenn Du Deine "Lösung" von a) meinst, leider nein


>  
> Bei b) habe ich etwas vergessen... "ist die Nullfunktion"

Ist [mm] $||f||_1 [/mm] = 0$, so ist f =0 fast überall. Wegen der Stetigkeit von f ist dann f =0 überall.


FRED


>  
> Grüße


Bezug
                                
Bezug
Nullmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Di 19.01.2010
Autor: Bodo0686

Hi,

ok, wie müsste ich denn hier bei a) vorgehen? Ich stehe ein wenig aufm Schlauch...

Grüße

Bezug
                                        
Bezug
Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Di 19.01.2010
Autor: fred97

gfm hats Dir doch oben vorgemacht !!

FRED

Bezug
                                                
Bezug
Nullmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Di 19.01.2010
Autor: Bodo0686

Ja, dass habe ich mir auch durchgelesen. Aber das ist doch noch nicht die Lösung oder doch?

Grüß

Bezug
                                                        
Bezug
Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Di 19.01.2010
Autor: fred97

Nochmal: sei A eine Nullmenge.

Annahme: A enthält einen inneren Punkt [mm] x_0. [/mm] Dann gibt es ein r>0 mit

             $K := [mm] \{x \in \IR^n: ||x-x_0||
Das Maß von K ist >0. Kann dann A eine Nullmenge sein ??

FRED

                

Bezug
                                                                
Bezug
Nullmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Di 19.01.2010
Autor: Bodo0686

Hallo,

Nein, kann es nicht mehr!

Grüße

Bezug
                                                                        
Bezug
Nullmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Di 19.01.2010
Autor: fred97


> Hallo,
>  
> Nein, kann es nicht mehr!


Ja, war ja auch noch nie

FRED

>  
> Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]