matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieNullmenge in Sigma-Algebra
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Maßtheorie" - Nullmenge in Sigma-Algebra
Nullmenge in Sigma-Algebra < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullmenge in Sigma-Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:00 Di 17.11.2009
Autor: kevin-m.

Aufgabe
Sei [mm] $\mathfrak{B}\subset \mathfrak{P}(S)$ [/mm] ein Ring über $S$, [mm] $\mu:\mathfrak{B}\to[0,\infty]$ [/mm] sei ein additives Maß. Des Weiteren sei [mm] $N\subset [/mm] S $ eine Nullmenge. Dann gibt es eine Nullmenge $M [mm] \in \sigma(\mathfrak{B})$ [/mm] mit [mm] $N\subset [/mm] M$.

Hallo,

zu dieser Aufgabe benötige ich eure Hilfe.
Ich weiß, dass für eine Nullmenge $N$ folgendes gelten muss: [mm] $\mu^\*(N)=0$, [/mm] d.h. dass das äußere Maß auf dieser Nullmenge verschwindet.
Mein Verständnisproblem beruht vor allem darauf, dass ich nicht weiß, wie ich mir [mm] $\sigma(\mathfrak{B})$ [/mm] vorstellen soll bzw. wie man diese Sigma-Algebra aus dem Ring [mm] $\mathfrak [/mm] B$, der ja auch nicht genauer angegeben ist, konstruiert.

Es wäre schön, wenn ihr mir ein paar Tipps bzw. Anregungen geben würdet.

Beste Grüße,
Fabi

        
Bezug
Nullmenge in Sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 04:39 Di 17.11.2009
Autor: felixf

Hallo Fabi!

> Sei [mm]\mathfrak{B}\subset \mathfrak{P}(S)[/mm] ein Ring über [mm]S[/mm],
> [mm]\mu:\mathfrak{B}\to[0,\infty][/mm] sei ein additives Maß. Des
> Weiteren sei [mm]N\subset S[/mm] eine Nullmenge. Dann gibt es eine
> Nullmenge [mm]M \in \sigma(\mathfrak{B})[/mm] mit [mm]N\subset M[/mm].
>  
> zu dieser Aufgabe benötige ich eure Hilfe.
>  Ich weiß, dass für eine Nullmenge [mm]N[/mm] folgendes gelten
> muss: [mm]\mu^\*(N)=0[/mm], d.h. dass das äußere Maß auf dieser
> Nullmenge verschwindet.
>  Mein Verständnisproblem beruht vor allem darauf, dass ich
> nicht weiß, wie ich mir [mm]\sigma(\mathfrak{B})[/mm] vorstellen
> soll bzw. wie man diese Sigma-Algebra aus dem Ring
> [mm]\mathfrak B[/mm], der ja auch nicht genauer angegeben ist,
> konstruiert.

So genau brauchst du [mm] $\sigma(\mathfrak{B})$ [/mm] nicht zu kennen; du musst nur wissen, dass abzaehlbare Durchschnitte und Vereinigungen von Mengen in [mm] $\mathfrak{B}$ [/mm] in [mm] $\sigma(\mathfrak{B})$ [/mm] liegen.

Konstruiere eine Folge von Mengen [mm] $M_n \in \sigma(\mathfrak{B})$ [/mm] mit $N [mm] \subseteq M_n$ [/mm] mit [mm] $\mu(M_n) \le \frac{1}{n}$. [/mm] Dazu brauchst du die Definition von [mm] $\mu^\ast$ [/mm] und [mm] $\mu^\ast(N) [/mm] = 0$.

Zeige damit, dass $M := [mm] \bigcap_{n\in\IN} M_n \in \sigma(\mathfrak{B})$ [/mm] eine Nullmenge ist mit $N [mm] \subseteq [/mm] M$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]