matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik/HypothesentestsNullhypothese
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Statistik/Hypothesentests" - Nullhypothese
Nullhypothese < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullhypothese: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:18 Mi 31.05.2006
Autor: sennon

Aufgabe
Die Maschine wird nun durdcch neu entwickelte Teile so verbessert, dass der Anteil der fehlerhaften Gehäuse auf weniger als 10% gesenkt werden kann (Gegenhypothese). Zur Überprüfung der Fertigungsqualität der verbesserten Maschine wird ein Signifikanztest der Länge 200 auf dem 2%-Niveau durchgeführt.

Geben Sie für diesen Signifikanztest die Testgröße (in Worten) sowie die Nullhypothese und die Arte des Test an. Ermitteln Sie den größtmöglichen Ablehnungsbereich der Nullhypothesen.

Hallo :-) ich habe die Schwierigkeit zu erkennen, wo der Ablehnungs- und Annahmebereich ist, sodass ich wissen kann, welches Zeichen ich einsetzen soll. Also < oder >.

So habe ich gelöst:
1 - P(T>0,10) [mm] \le [/mm] 0,02
   - P(T>0,01) [mm] \le [/mm] - 0,98
     P(T>0,01) [mm] \ge [/mm] 0,98
         c = 29                  ->Also: Ablehnungsbereich= {0;...; 28}

Das Ergebnis von der Aufgabe ist aber:
                       Ablehnungsbereich = {0; 1; ... ; 11}

Erklär mir aber bitte auch noch, wie ich den Ablehnungs- und Annahmebereich hier gut erkennen kann. Ich hab übermorgen schon die Prüfung (Fach-Abi) in Mathe.

Vielen Dank! :-)

P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Nullhypothese: Antwort
Status: (Antwort) fertig Status 
Datum: 10:39 Do 01.06.2006
Autor: Zwerglein

Hi, sennon,

> Die Maschine wird nun durdcch neu entwickelte Teile so
> verbessert, dass der Anteil der fehlerhaften Gehäuse auf
> weniger als 10% gesenkt werden kann (Gegenhypothese). Zur
> Überprüfung der Fertigungsqualität der verbesserten
> Maschine wird ein Signifikanztest der Länge 200 auf dem
> 2%-Niveau durchgeführt.
>
> Geben Sie für diesen Signifikanztest die Testgröße (in
> Worten) sowie die Nullhypothese und die Arte des Test an.
> Ermitteln Sie den größtmöglichen Ablehnungsbereich der
> Nullhypothesen.
>  Hallo :-) ich habe die Schwierigkeit zu erkennen, wo der
> Ablehnungs- und Annahmebereich ist, sodass ich wissen kann,
> welches Zeichen ich einsetzen soll. Also < oder >.
>
> So habe ich gelöst:
>  1 - P(T>0,10) [mm]\le[/mm] 0,02
>     - P(T>0,01) [mm]\le[/mm] - 0,98
>       P(T>0,01) [mm]\ge[/mm] 0,98
>           c = 29                  ->Also:
> Ablehnungsbereich= {0;...; 28}
>  
> Das Ergebnis von der Aufgabe ist aber:
> Ablehnungsbereich = {0; 1; ... ; 11}

Also: Aus dem Text der Aufgabe ("... fehlerhaften Gehäuse auf WENIGER als 10 % gesenkt ...") erkennst Du, dass es sich um einen LINKSSEITIGEN Test handelt. Bei einem solchen gilt OHNE AUSNAHME:
Der Ablehnungsbereich der Nullhypothese liegt LINKS vom Annahmebereich!

(Genau umgekehrt ist es bei einem rechtsseitigen Test, wo der Ablehunungsbereich rechts liegt!)

Demnach lautet Dein Ablehnungsbereich: [mm] \{ 0; ... ; c \} [/mm]
Und demnach der Ansatz der Rechnung:
P(T [mm] \le [/mm] c) [mm] \le [/mm] 0,02, woraus Du mit dem Tafelwerk den Wert c=11 ermittelst.

Deine Lösung wäre also nur dann richtig, wenn ein rechtsseitiger Test vorgelegen hätte, d.h. nach der Veränderung der Maschine die Wahrscheinlichkeit p für fehlerhafte Gehäuse auf mehr als 0,1 gestiegen wäre (Gegenhypothese: p > 0,1)!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]