matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungNotdienst im Hochhaus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - Notdienst im Hochhaus
Notdienst im Hochhaus < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Notdienst im Hochhaus: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:26 Mi 19.08.2009
Autor: Uncle_Sam

Aufgabe
In einem Hochaus wird der Notdienst durchschnittlich 0,5 am Tag gerufen.
An wie vielen Tagen eines Jahres kann mit höchsten einem Notdienst-Einsatz gerechnet werden.

Hallo,

kann mir irgendeiner ansätze geben, den ich weiß kein rat, vielleicht ist es eine einfach aufg. aber ich weiß nichts. ich denk mal mit poisson, normalverteilung, hyper-vertl. und biominal kommt mann hier nicht weiter.

Freundliche Grüße
Uncle_Sam

        
Bezug
Notdienst im Hochhaus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 Mi 19.08.2009
Autor: Uncle_Sam

weiß keiner eine hilfestellung?


Bezug
                
Bezug
Notdienst im Hochhaus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 Mi 19.08.2009
Autor: abakus


> weiß keiner eine hilfestellung?
>  

Hallo,
du solltest als ersten Schritt mal für EINEN einzelnen Tag berechnen, wie wahrscheinlich Null Einsätze und wie wahrscheinlich 1 Einsatz an diesem Tag ist.
Das ist wohl doch Poisson, oder???

Danach kommt der Erwartungswert für die Anzahl dieser Tage im Jahr.
Gruß Abakus

Bezug
                        
Bezug
Notdienst im Hochhaus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:03 Mi 19.08.2009
Autor: Uncle_Sam

der erwartungswert ist doch 180=360x0,5(das ist ja unsere wahrscheinlichkeit) nur komm ich auf 0 bei poisson, raus kommen soll da 332 tage. ich hab bestimmt einen denkfehler, nur wo?

Bezug
                                
Bezug
Notdienst im Hochhaus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 19.08.2009
Autor: abakus


> der erwartungswert ist doch 180=360x0,5(das ist ja unsere
> wahrscheinlichkeit) nur komm ich auf 0 bei poisson, raus
> kommen soll da 332 tage. ich hab bestimmt einen denkfehler,
> nur wo?

Nochmal:
Berechne zuerst die Wahrscheinlichkeit, dass es an einem Tag 0 oder 1 Einsätze gibt.
Vielleicht sagt dir DANACH jemand, was du dann mit diesem Ergebnis weiter machen kannst.
Dieses Zwischenergebnis brauchst du erst.
Gruß Abakus


Bezug
                                        
Bezug
Notdienst im Hochhaus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:08 Mi 19.08.2009
Autor: Uncle_Sam

jetzt hab ichs:

poisson(kummuliert):0,5;1, da kommt 0,90 raus, das den mal 365, gleich 332 tage.
is ja klar, nächstes mal besser aufg. lesen. ich ...
trotzdem danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]