matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionen(Not)-Umkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - (Not)-Umkehrfunktion
(Not)-Umkehrfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(Not)-Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 So 22.06.2008
Autor: tedd

Aufgabe
Untersuchen Sie folgende Funktion auf Umkehrbarkeit (d.h. bestimmen Sie jeweikls den Definitions- und Wertebereich dieser Funktion sowie die Umkehrfunktion bzw eine Not-Umkehrfunktion mit Definitions- und Wertebereich:
[mm] f(x)=\sqrt{x^2+x+2} [/mm]

für den Definitionsbereich habe ich geschaut wann der Term unter der WUrzel null wird mit der p/q-Formel:
[mm] p\to1 [/mm]
[mm] q\to2 [/mm]

[mm] x_1_/_2=-\bruch{1}{2}\pm\sqrt{\bruch{1}{2}-2} [/mm]
keine NST
[mm] \Rightarrow [/mm] Wurzelist immer positiv
[mm] \Rightarrow D_f=\IR [/mm]
Beim Werteberiech bin ich mir noch nicht sicher, aber der müsste
[mm] W_f=\{x | x\ge\sqrt{2} \} [/mm] sein.

Für die Umkehrfunktion:
[mm] y=\sqrt{x^2+x+2} [/mm]
[mm] y^2=x^2+x+2 [/mm]

Jetzt wollte ich eigentlich das [mm] y^2 [/mm] rüberholen und dann irgendwie wieder die p/q-Formel anwenden aber irgendwie komm ich so nicht weiter weil ich dann ja
[mm] 0=\bruch{x^2+x+2}{y^2} [/mm] da stehen habe und darauf kann ich die ja nicht anwenden ?!
Bin wie immer für jede Hilfe dankbar ;)
Besten Gruß,
tedd

        
Bezug
(Not)-Umkehrfunktion: Korrekturen
Status: (Antwort) fertig Status 
Datum: 17:40 So 22.06.2008
Autor: Loddar

Hallo tedd!



> [mm]x_1_/_2=-\bruch{1}{2}\pm\sqrt{\bruch{1}{2}-2}[/mm]
> keine NST
> [mm]\Rightarrow[/mm] Wurzelist immer positiv
> [mm]\Rightarrow D_f=\IR[/mm]

[ok]


> Beim Werteberiech bin ich mir noch nicht sicher, aber der müsste
> [mm]W_f=\{x | x\ge\sqrt{2} \}[/mm] sein.

[notok] Wie lautet denn der y-Wert des Scheitelpunktes der Parabel: $p(x) \ = \ [mm] x^2+x+2$ [/mm] ?

  

> Jetzt wollte ich eigentlich das [mm]y^2[/mm] rüberholen und dann
> irgendwie wieder die p/q-Formel anwenden aber irgendwie
> komm ich so nicht weiter weil ich dann ja
> [mm]0=\bruch{x^2+x+2}{y^2}[/mm] da stehen habe

[notok] Rechne auf beiden Seiten der Gleichung $- \ [mm] y^2$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
(Not)-Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 So 22.06.2008
Autor: tedd

Hallo Loddar, danke für die Korrektur! :)

Also für den Scheitelpunkt gilt [mm] (-0.5/\sqrt{1\bruch{3}{4}}) [/mm]
Dann gilt für den Wertebereich wohl
[mm] W_f=\{x | x\ge \sqrt{1\bruch{3}{4}} \} [/mm]

Wegen p/q-Formel:
[mm] y^2=x^2+x+2 [/mm]
[mm] 0=x^2+x+2-y^2 [/mm]
Kann ichs dann so machen?
p [mm] \to [/mm] 1
q [mm] \to 2-y^2 [/mm]
?
[mm] x_1_/_2=-\bruch{1}{4}\pm\sqrt{\bruch{1}{4}-2+y^2} [/mm]
Dann schneide ich einen Bereich weg und erhalte
[mm] f^-^1(x)=-\bruch{1}{4}+\sqrt{\bruch{1}{4}-2+x^2} [/mm]
mit [mm] D_f^-^1=\{x | x\ge \sqrt{1\bruch{3}{4}} \} [/mm]
und [mm] W_f^-^1=\{x | x\ge 0 \} [/mm]

Hoffe das ist richtig und nicht voll daneben :/

Bezug
                        
Bezug
(Not)-Umkehrfunktion: Korrektur
Status: (Antwort) fertig Status 
Datum: 21:23 So 22.06.2008
Autor: Loddar

Hallo tedd!


> Also für den Scheitelpunkt gilt [mm](-0.5/\sqrt{1\bruch{3}{4}})[/mm]

[ok]


> Dann gilt für den Wertebereich wohl [mm]W_f=\{x | x\ge \sqrt{1\bruch{3}{4}} \}[/mm]

[notok] Der Zahlenwert ist  [ok] , aber da gehört kein $x_$ hin!

  

> Kann ichs dann so machen?
> p [mm]\to[/mm] 1
> q [mm]\to 2-y^2[/mm]  ?

[ok]


> [mm]x_1_/_2=-\bruch{1}{4}\pm\sqrt{\bruch{1}{4}-2+y^2}[/mm]

[notok] Wie kommst Du auf das [mm] $\bruch{1}{\red{4}}$ [/mm] vor der Wurzel?


> Dann schneide ich einen Bereich weg und erhalte
> [mm]f^-^1(x)=-\bruch{1}{4}+\sqrt{\bruch{1}{4}-2+x^2}[/mm]
> mit [mm]D_f^-^1=\{x | x\ge \sqrt{1\bruch{3}{4}} \}[/mm]

[ok]


> und  [mm]W_f^-^1=\{x | x\ge 0 \}[/mm]

[notok] Wie kommst Du auf die Null? Und auch hier hat $x_$ nichts verloren!


Gruß
Loddar


Bezug
                                
Bezug
(Not)-Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 So 22.06.2008
Autor: tedd

>> Dann gilt für den Wertebereich wohl [mm]W_f=\{x | x\ge \sqrt{1\bruch{3}{4}} \}[/mm]

> [notok] Der Zahlenwert ist  [ok] , aber da gehört kein $x_$ hin!

Stimmt, den Wertebereich betreffen ja die y-Werte oder?
Also heissts richtig:
[mm] W_f=\{y | y\ge \sqrt{1\bruch{3}{4}} \} [/mm] ?


>> [mm]x_1_/_2=-\bruch{1}{4}\pm\sqrt{\bruch{1}{4}-2+y^2}[/mm]

>[notok] Wie kommst Du auf das [mm] $\bruch{1}{\red{4}}$ [/mm] vor der Wurzel?

Stimmt, das war ein flüchtigkeitsfehler... Es muss natürlich heissen:
[mm] x_1_/_2=-\bruch{1}{2}\pm\sqrt{\bruch{1}{4}-2+y^2} [/mm]

>> und  [mm]W_f^-^1=\{x | x\ge 0 \}[/mm]

>[notok] Wie kommst Du auf die Null? Und auch hier hat $x_$ nichts verloren!

Ohja - hier muss es dann heissen:
[mm] W_f^-^1=\{y | y\ge -\bruch{1}{2} \} [/mm]
da der Bereich ab dem Scheitelpunkt weggeschnitten wird und den Wertebereich die y-Werte betreffen wie oben.
Hoffe so ists nun richtig.
Super vielen dank für die Hilfe Loddar ;) [ok]

Bezug
                                        
Bezug
(Not)-Umkehrfunktion: nun richtig
Status: (Antwort) fertig Status 
Datum: 08:15 Mo 23.06.2008
Autor: Loddar

Hallo tedd!


Nun stimmt alles ... [ok]


Gruß
Loddar



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]