matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraNormierte Determinantenform
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Normierte Determinantenform
Normierte Determinantenform < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normierte Determinantenform: Kreuzprodukt
Status: (Frage) überfällig Status 
Datum: 16:56 Fr 18.05.2007
Autor: Leni-H

Aufgabe
http://home.mathematik.uni-freiburg.de/hannes/SS07/LA2/Uebungen/05.pdf

Hallo!

Ich komme bei einer Aufgabe nicht weiter und hoffe, dass mir jemand helfen kann.
Es handelt sich um Aufgabe 2 auf der Seite http://home.mathematik.uni-freiburg.de/hannes/SS07/LA2/Uebungen/05.pdf

Ich habe mir schon einmal ein paar Gedanken bzw. Vorüberlegungen dazu gemacht.
Es ist ja U=span{v1,....vn-1}
-> dim (U) = n-1
-> dim [mm] (U\perp) [/mm] = 1
-> [mm] U\perp [/mm] = v1 x ..... x vn-1
-> Basis von [mm] U\perp [/mm] = {v1 x ..... x vn-1}
-> ONB von [mm] U\perp [/mm] = { [mm] \bruch{v1 x ..... x vn-1}{\parallel v1 x ..... x vn-1 \parallel}} [/mm]

Also ist Un= Vn-Pu(Vn) =

< vn, [mm] \bruch{v1 x ..... x vn-1}{\parallel v1 x ..... x vn-1 \parallel} [/mm] > *
[mm] \bruch{v1 x ..... x vn-1}{\parallel v1 x ..... x vn-1 \parallel} [/mm]

Nun schau ich mir D(v1,....vn-1, un) an.

Es gilt nach Definition (Vorlesung)

D(v1,....,Vn-1, un) = < v1 x ..... x vn-1, un >

= < v1 x ..... x vn-1 , < vn, [mm] \bruch{v1 x ..... x vn-1}{\parallel v1 x ..... x vn-1 \parallel} [/mm] > * [mm] \bruch{v1 x ..... x vn-1}{\parallel v1 x ..... x vn-1 \parallel} [/mm] >

Hier komm ich jetzt aber nicht weiter. Ich weiß nicht wie und was ich jetzt noch umformen kann um später darauf zu kommen, dass
D (v1,.....vn-1,un) = D (v1,.....vn)

Vielleicht könnt ihr mir weiterhelfen.

Lg Leni

        
Bezug
Normierte Determinantenform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:02 So 20.05.2007
Autor: Leni-H

Kann mir niemand weiterhelfen?

Bezug
                
Bezug
Normierte Determinantenform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:29 So 20.05.2007
Autor: angela.h.b.


> Kann mir niemand weiterhelfen?

Du hast aber auch eine echte Hürde eingebaut - daß man sich die Aufgabe erst runterladen muß.

Gruß v. Angela



Bezug
        
Bezug
Normierte Determinantenform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 So 20.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]