matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikNormalverteilung Anwendung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Normalverteilung Anwendung
Normalverteilung Anwendung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung Anwendung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 04:16 So 29.06.2014
Autor: Cccya

Aufgabe
Aus Erfahrung weiß man, dass etwa 4% der Inhaber von Flugtickets nicht zum Abflug ihrer Maschine erscheinen. Für einen Flug mit 264 zur Verfügung stehenden Passagiersitzplätzen verkaufe eine Fluggesellschaft 270 Tickets. Mit welcher approximativen Wahrscheinlichkeit erscheinen
mehr als 264 Passagiere zum Abflug?
Hinweis: Tabellen mit Werten der Standardnormalverteilung finden sich im Internet z.B. unter
der Adresse http://de.wikipedia.org/wiki/Tabelle_Standardnormalverteilung.

Also dem Hinweis entsprechend habe ich angenommen, dass die Anzahl der Passagiere die nicht kommt normalverteilt ist. Der Erwartungswert wäre dann 270*0.04=10.8. Was mich verwundert hat ist, dass keine Aussage zur Standardabweichung gemacht wird, kann ich einfach annehmen dass die 1 ist? Damit hätte ich dann für F(6) = [mm] F_{Standard} [/mm] (6-10.8) = [mm] F_{Standard} [/mm] (-4.8) = 1 - [mm] F_{Standard} [/mm] (4.8) = 1- 0.99998 = 0.00002
Ein extrem kleiner Wert erscheint mir hier auch plausibel, ist das korrekt?
Danke Euch!

        
Bezug
Normalverteilung Anwendung: Antwort
Status: (Antwort) fertig Status 
Datum: 04:42 So 29.06.2014
Autor: MaslanyFanclub

Guten Morgen,

> Aus Erfahrung weiß man, dass etwa 4% der Inhaber von
> Flugtickets nicht zum Abflug ihrer Maschine erscheinen.
> Für einen Flug mit 264 zur Verfügung stehenden
> Passagiersitzplätzen verkaufe eine Fluggesellschaft 270
> Tickets. Mit welcher approximativen Wahrscheinlichkeit
> erscheinen
>  mehr als 264 Passagiere zum Abflug?
>  Hinweis: Tabellen mit Werten der Standardnormalverteilung
> finden sich im Internet z.B. unter
>  der Adresse
> http://de.wikipedia.org/wiki/Tabelle_Standardnormalverteilung.
>  Also dem Hinweis entsprechend habe ich angenommen, dass
> die Anzahl der Passagiere die nicht kommt normalverteilt
> ist. Der Erwartungswert wäre dann 270*0.04=10.8. Was mich
> verwundert hat ist, dass keine Aussage zur
> Standardabweichung gemacht wird, kann ich einfach annehmen
> dass die 1 ist?

Nein. Wieso nicht annehmen, dass sie 10 ist, oder 367, oder...?
Die Anwesenheit der Passagiere ist binomialverteilt. Dementsprechend lässt sich die Varianz einfach ausrechnen. Die gesuchte Wahrscheinlichkeit lässt sich denn approximativ über die Normalverteilung ausrechnen.
(Da [mm] $\sigma [/mm] >3$ ist die Approximation auch aussagekräftig. )

> Damit hätte ich dann für F(6) =
> [mm]F_{Standard}[/mm] (6-10.8) = [mm]F_{Standard}[/mm] (-4.8) = 1 -
> [mm]F_{Standard}[/mm] (4.8) = 1- 0.99998 = 0.00002
>  Ein extrem kleiner Wert erscheint mir hier auch plausibel,
> ist das korrekt?
>  Danke Euch!


Bezug
                
Bezug
Normalverteilung Anwendung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:11 Mo 30.06.2014
Autor: Cccya

Ok, also wenn die Anwesenheit Binomialverteilt ist und p = 0.04 dann ist die Varianz 270*0.04(1-0.04)=10.368   [mm] \wurzel{Varianz} [/mm] = 3.219
Gesucht ist P(X < 6) = P(X [mm] \le [/mm] 5) also maximal 5 Erfolge und dass ist annährend
[mm] F_{Standard} [/mm] ((5+0.5-10.8)/3.219) - [mm] F_{Standard} [/mm] ( (-0.5-10.8)/3.219) = 0.05

So richtig?

Bezug
                        
Bezug
Normalverteilung Anwendung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Mo 30.06.2014
Autor: Diophant

Hallo,

> Ok, also wenn die Anwesenheit Binomialverteilt ist und p =
> 0.04 dann ist die Varianz 270*0.04(1-0.04)=10.368
> [mm]\wurzel{Varianz}[/mm] = 3.219
> Gesucht ist P(X < 6) = P(X [mm]\le[/mm] 5) also maximal 5 Erfolge
> und dass ist annährend
> [mm]F_{Standard}[/mm] ((5+0.5-10.8)/3.219) - [mm]F_{Standard}[/mm] (
> (-0.5-10.8)/3.219) = 0.05

>

> So richtig?

Nein, es ist falsch. Und ehrlich gesagt: so dermaßen falsch, dass man nicht nachvollziehen kann, wie du darauf kommst. Einigermaßen richtig sind Mittelwert und Standardabweichung (wobie letztere abenteuerlich gerundet ist...). Mit diesen Werten suchst du für deine binomialte ZV eine Wahrscheinblichkeit der Form

P(X>264)

Das approximiere jetzt mittels Normalverteilung (wobei man in diesem Fall m.a. auf die Stetigkeitskorrekztur nicht nur verzichten kann sondern sogar verzichten sollte).


Gruß, Diophant

Bezug
                                
Bezug
Normalverteilung Anwendung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Di 01.07.2014
Autor: Cccya

Aber die Binomialverteilung gibt mir doch die Wahrscheinlichkeit für k Erfolge? Und hier habe ich ja die Nichtanwesenheit als Erfolg definiert und somit würde mir doch P(x > 264) die Wahrscheinlichkeit dafür geben, dass mehr als 264 Leute nicht kommen? Meine Überlegung war eben dass maximal 5 Leute nicht kommen dürfen, damit mehr als 264  Leute kommen.

Bezug
                                        
Bezug
Normalverteilung Anwendung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 Di 01.07.2014
Autor: Diophant

Hallo,

ja sorry: da habe ich nicht aufgepasst und du hast völlig Recht. Es geht also darum, [mm] P(X\le{5}) [/mm] durch Approximation per Normalverteilung zu berechnen.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]