Normalteiler einer Untergruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:02 So 26.04.2009 | Autor: | fabwag |
Aufgabe | Sei G eine Gruppe. Zeigen Sie, dass nicht jeder Normalteiler einer Untergruppe U von G normal in G ist.
Betrachten Sie dazu folgendes Beispiel:
Es sei G die alternierende Gruppe [mm] A_{5} [/mm] und U= { g [mm] \in [/mm] G | g(5)=5 } der Stabilisator von 5. Zeigen Sie, dass N={e, (13)(24), (12)(34), (14)(23)} eine Untergruppe von G ist, die normal in U, nicht aber normal in G ist. |
Hallo,
das N eine Untergruppe von G ist, ist klar.
Ein Problem habe ich damit zu zeigen das es N ein Normalteiler von U (bzw. kein Normalteiler von G) ist.
Ich weiß, dass eine Untergruppe U von G Normalteiler ist wenn gilt: [mm] gUg^{-1} [/mm] = U [mm] \forall [/mm] g [mm] \in [/mm] G.
Wenn ich das aber in dem Beispiel wirklich für alle Elemente nachrechnen muss, werde ich ziemlich lange brauchen...
Gibts da nicht eine effektivere Methode??
Vielen Dank bereits im Vorraus für eure Antworten!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:14 Mo 27.04.2009 | Autor: | felixf |
Hallo
> Sei G eine Gruppe. Zeigen Sie, dass nicht jeder
> Normalteiler einer Untergruppe U von G normal in G ist.
>
> Betrachten Sie dazu folgendes Beispiel:
> Es sei G die alternierende Gruppe [mm]A_{5}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
und U= { g [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
G |
> g(5)=5 } der Stabilisator von 5. Zeigen Sie, dass N={e,
> (13)(24), (12)(34), (14)(23)} eine Untergruppe von G ist,
> die normal in U, nicht aber normal in G ist.
>
> das N eine Untergruppe von G ist, ist klar.
> Ein Problem habe ich damit zu zeigen das es N ein
> Normalteiler von U (bzw. kein Normalteiler von G) ist.
> Ich weiß, dass eine Untergruppe U von G Normalteiler ist
> wenn gilt: [mm]gUg^{-1}[/mm] = U [mm]\forall[/mm] g [mm]\in[/mm] G.
> Wenn ich das aber in dem Beispiel wirklich für alle
> Elemente nachrechnen muss, werde ich ziemlich lange
> brauchen...
Nun, es geht: da $U$ kein Normalteiler von $G$ sein soll musst du ja nur ein Element aus $G$ finden mit dem das nicht klappt (dieses Element sollte nicht in $U$ liegen).
Um zu zeigen dass $N$ ein Normalteiler in $U$ ist kannst du eventuell auch anders vorgehen. Beachte erstmal, dass $U [mm] \cong A_4$ [/mm] ist. Weisst du etwas ueber Normalteiler von [mm] $A_4$ [/mm] oder [mm] $S_4$?
[/mm]
LG Felix
|
|
|
|