matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperNormalteiler, Verständnisfrage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Normalteiler, Verständnisfrage
Normalteiler, Verständnisfrage < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalteiler, Verständnisfrage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Sa 24.11.2012
Autor: theresetom

Aufgabe
Warum ist das Bild eines Gruppenhomomorphismus "nur" eine Untergruppe und kein Normalteiler?

[mm] \phi: [/mm] G->H Homomorphismus, G,H Gruppen
Im [mm] \phi [/mm] = [mm] \{ \phi(x) | x \in G \} [/mm]

LG ;)

        
Bezug
Normalteiler, Verständnisfrage: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Sa 24.11.2012
Autor: Teufel

Hi!

Für ein Gegenbeispiel brauchst du nicht-abelsche Gruppen. Guck dir mal den Homomorphismus von Sym(3) nach Sym(4) an, der eine Permutation [mm] \sigma [/mm] einfach fest lässt. d.h. das Bild von [mm] \sigma [/mm] soll wie vorher in der Sym(3) sein, nur, dass 4 immer auf 4 geht.

Das Ding ist kein Normalteiler von Sym(4) (konjugiere mal z.B. (1 4) dran).

Bezug
                
Bezug
Normalteiler, Verständnisfrage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Sa 24.11.2012
Autor: theresetom

Hallo
Okay.
$ [mm] \sigma [/mm] $ : [mm] S_3 [/mm] -> [mm] S_4 [/mm]

Ah also hält es nur 4 fest.


Bezug
                        
Bezug
Normalteiler, Verständnisfrage: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Sa 24.11.2012
Autor: Teufel

Genau. probiere mal ein Element, das die 1 auch nicht fest lässt, damit sollte das klappen.

Bezug
                                
Bezug
Normalteiler, Verständnisfrage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:17 Sa 24.11.2012
Autor: theresetom

Danke nun ist es klar.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]