matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraNormalteiler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Normalteiler
Normalteiler < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalteiler: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:58 Mi 10.05.2006
Autor: weibi

Aufgabe
A,B,C,D seinen Untergruppen von G. Ist A Normalteiler von B und C Normalteiler von D, dann ist A [mm] \cap [/mm] C Normalteiler von B [mm] \cap [/mm] D  

Würde mich wirklih sehr Interessieren, wie diese Aufgabe geht, vielleicht wäre jemand so nett, mir die Antwort zu schicken

Lg, Claudia

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Mi 10.05.2006
Autor: felixf

Hallo Claudia!

> A,B,C,D seinen Untergruppen von G. Ist A Normalteiler von B
> und C Normalteiler von D, dann ist A [mm]\cap[/mm] C Normalteiler
> von B [mm]\cap[/mm] D
> Würde mich wirklih sehr Interessieren, wie diese Aufgabe
> geht, vielleicht wäre jemand so nett, mir die Antwort zu
> schicken

Bei dieser Aufgabe musst du die Eigenschaften einfach nachrechnen.

Erstmal musst du zeigen, dass $A [mm] \cap [/mm] C$ eine Untergruppe von $B [mm] \cap [/mm] D$ ist. Das es eine Untergruppe von $G$ ist hattet ihr entweder schon oder du musst es auch noch zeigen, und da $A [mm] \cap [/mm] C [mm] \subseteq [/mm] B [mm] \cap [/mm] D$ ist bist du damit dann fertig.

Als naechstes musst du zeigen, dass $A [mm] \cap [/mm] C$ ein Normalteiler in $B [mm] \cap [/mm] D$ ist. D.h. fuer jedes $g [mm] \in [/mm] B [mm] \cap [/mm] D$ und jedes $h [mm] \in [/mm] A [mm] \cap [/mm] C$ ist $g h [mm] g^{-1} \in [/mm] A [mm] \cap [/mm] C$.

Wenn du jetzt noch immer keine Idee hast: Zeig doch erst, dass $g h [mm] g^{-1} \in [/mm] A$ ist, und dann, dass $g h [mm] g^{-1} \in [/mm] C$ ist. Was folgt daraus?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]