matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraNormalenvektor einer Geraden??
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Normalenvektor einer Geraden??
Normalenvektor einer Geraden?? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalenvektor einer Geraden??: Frage
Status: (Frage) beantwortet Status 
Datum: 16:12 So 07.11.2004
Autor: UniH

Hallo Matheraumteam,

ich möchte den Normalenvektor der Geraden x=(3,2,1)+t(2,1,1) ausrechnen. D.h. doch, dass der Normalenvektor n senkrecht auf dem Richtungsvektor b1 (2,1,2) steht, so dass das Skalarprodukt beider Vektoren 0 ergeben muss.
Also
n*(2,1,2)=0
Aber dann komm ich ja immer nocht nicht weiter. Wie kann ich denn den Normalenvektor einer Greaden ganz simpel ausrechnen? Geht es überhaupt?
Danke im Voraus
Gruß Henning
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Normalenvektor einer Geraden??: Antwort (?)
Status: (Antwort) fertig Status 
Datum: 17:49 So 07.11.2004
Autor: Bastiane

Hallo Henning!

> ich möchte den Normalenvektor der Geraden
> x=(3,2,1)+t(2,1,1) ausrechnen. D.h. doch, dass der
> Normalenvektor n senkrecht auf dem Richtungsvektor b1
> (2,1,2) steht, so dass das Skalarprodukt beider Vektoren 0
> ergeben muss.

Also, wenn du eine Gerade im Zweidimensionalen hättest, dann wäre der Normalenvektor ja einfach senkrecht zu deiner Geraden. Da könntest du zur Veranschaulichung einfach dein Geodreieck senkrecht anlegen... ;-) Aber jetzt stell dir eine Gerade im Dreidimensionalen vor: wo soll da ein Normalenvektor sein? Wenn du einen Finger nimmst, um die Gerade darzustellen, und einen Finger der anderen Hand senkrecht dazu stellst, dann kannst du deinen Finger einmal ganz um die Gerade herumdrehen, und jedes Mal steht er senkrecht. Demnach gäbe es unendlich viele Normalenvektoren, aber ich weiß nicht, ob man das bei einer Gerade noch so bezeichnet, ich würde sagen, es gibt keinen Normalenvektor.

> Also
>  n*(2,1,2)=0
>  Aber dann komm ich ja immer nocht nicht weiter. Wie kann
> ich denn den Normalenvektor einer Greaden ganz simpel
> ausrechnen? Geht es überhaupt?

Wieso kommst du jetzt nicht weiter? Nach Definition des Skalarproduktes (das du ja hier hast), steht dann da:
[mm] 2n_1+n_2+2n_3=0 [/mm]
Jetzt kannst du einfach Zahlen einsetzen, so dass die Gleichung stimmt, z. B. 1,0,-1 oder 1,2,-2 usw., du hast dafür unendlich viele Möglichkeiten, was genau meiner obigen Überlegung entspricht.

Wenn du eine Ebene hast, dann kannst du den Normalenvektor übrigens ganz einfach berechnen: du nimmst beide Richtungsvektoren und berechnest das Verktorprodukt.

Hast du denn eine spezielle Aufgabe, wo du einen Normalenvektor zu einer Geraden berechnen musst, oder fiel dir das einfach nur so ein?

Viele Grüße
Bastiane
[haee]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]