matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenNormalenvektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - Normalenvektor
Normalenvektor < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 Mo 23.05.2011
Autor: Mathics

Hallo,

ich habe mal eben eine Frage. Und zwar:

beim Normalenvektor gilt ja: [mm] \overrightarrow{n} [/mm] * [mm] (\overrightarrow{0X} [/mm] - [mm] \overrightarrow{0A}) [/mm] = 0

Ebenfalls gilt: overrightarrow{n} * [mm] \overrightarrow{0X} [/mm] = overrightarrow{n} * [mm] \overrightarrow{0A} [/mm] !

Wie kann dieses zweite denn sein? Man löst doch die Klammer von [mm] (\overrightarrow{0X} [/mm] - [mm] \overrightarrow{0A}) [/mm] auf, aber wo bleibt das Minus in der Klammer? Das kann doch nicht verschwinden oder?

        
Bezug
Normalenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Mo 23.05.2011
Autor: MathePower

Hallo Mathics,

> Hallo,
>  
> ich habe mal eben eine Frage. Und zwar:
>  
> beim Normalenvektor gilt ja: [mm]\overrightarrow{n}[/mm] *
> [mm](\overrightarrow{0X}[/mm] - [mm]\overrightarrow{0A})[/mm] = 0
>  
> Ebenfalls gilt: overrightarrow{n} * [mm]\overrightarrow{0X}[/mm] =
> overrightarrow{n} * [mm]\overrightarrow{0A}[/mm] !
>  
> Wie kann dieses zweite denn sein? Man löst doch die
> Klammer von [mm](\overrightarrow{0X}[/mm] - [mm]\overrightarrow{0A})[/mm]
> auf, aber wo bleibt das Minus in der Klammer? Das kann doch
> nicht verschwinden oder?


Auf beiden Seiten der Gleichung

[mm]\overrightarrow{n}*(\overrightarrow{0X} - \overrightarrow{0A}) = 0[/mm]

ist [mm]\overrightarrow{n}* \overrightarrow{0A}[/mm] addiert worden.



Gruss
MathePower

Bezug
                
Bezug
Normalenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 23.05.2011
Autor: Mathics

Alles klar. Und kurz noch eine Frage:

Ist der Normalenvektor einfach ein anderer Weg eine Ebene darzustellen, wenn man halt nicht drei Punkte hat und somit nicht die Paramenterdarstellung bilden kann?

Bezug
                        
Bezug
Normalenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Mo 23.05.2011
Autor: Adamantin


> Alles klar. Und kurz noch eine Frage:
>  
> Ist der Normalenvektor einfach ein anderer Weg eine Ebene
> darzustellen, wenn man halt nicht drei Punkte hat und somit
> nicht die Paramenterdarstellung bilden kann?

Verwechsel bitte nicht die Begriffe Normalenvektor und Normalengleichung oder Hesse'sche Normalenform oder was immer ihr gerade behandelt. Der Normalenvektor ist ein Vektor und damit ein einzelnes Objekt! Schon in deinem ersten Post hast du streng genommen NICHTS mit dem Normalenvektor allein gemacht, sondern direkt mit der Normalengleichung einer Ebene.

Korrekt ist aber: Die Normalenform einer Ebene ist eine andere Möglichkeit, eine Ebene zu definieren, und zwar über nur einen Vektor bzw. einem beliebigen Stützpunkt IN der Ebene sowie eben dem Normalenvektor [mm] \perp [/mm] zur Ebene. Du kannst dann eine Ebene entweder über drei Punkte, 1 Punkt und zwei Richtungsvektoren oder 1 Punkt und einen Normalenvektor bestimmen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]